Effect of honokiol on human bladder cancer cell by arresting cell cycle and inducing apoptosis
-
摘要: 目的:研究和厚朴酚对膀胱癌细胞的生长抑制作用。方法:采用人类膀胱癌细胞BIU87,以和厚朴酚进行细胞毒性实验,设定不同药物浓度,经过24、48、72 h药物作用,观察细胞生长和死亡状态;药物作用24 h,进行流式细胞术检测,观察细胞在不同药物浓度作用下的细胞生长周期变化;细胞经过药物作用72 h,观察细胞在不同药物浓度作用后克隆细胞团数量;细胞加入荧光标记物,选取不同浓度药物各作用1 h,采用流式细胞仪检测该药物是否促进细胞产生氧自由基以杀伤肿瘤细胞;提取经不同药物浓度作用后的细胞蛋白质,采用蛋白质印迹法检测细胞凋亡蛋白和信号通路的蛋白表达变化情况。结果:该药物对细胞有明显的生长抑制作用;随着浓度的增高,细胞G1期和SubG1期比例逐渐增高,细胞克隆团数量呈递减趋势;细胞在药物作用下有明显的Caspase3、PARP、CyclinD1、Cdk2、P21、P27、Bax/Bcl-2、Bcl-xL的趋势性表达,同时和厚朴酚促进细胞产生活性氧自由基,激活细胞内MAPK信号通路的转导,导致肿瘤细胞死亡。结论:和厚朴酚对人类膀胱癌细胞BIU87具有明显的生长抑制作用,该药可使细胞生长在G1期停滞并诱导细胞凋亡,并通过产生活性氧自由基,激活MAPK信号通路相关蛋白的表达,抑制肿瘤细胞生长。Abstract: Objective:To study the growth inhibitory effect of honokiol on human bladder cancer cell line BIU87.Method:The experiment used cytotoxicity assays to study the effect of honokiol on BIU87's growth in different drug concentrations, and the time of drug treating was 24 h, 48 h, 72 h respectively. BIU87 was affected for 24 h to study cell growth cycle on the different drug concentrations by flow cytometer. After the cells were affected by different concentrations of honokiol for 72 h, we counted cloned clusters of two cell lines. Cells with fluorescent markers in the different drug concentrations were detected whether honokiol promoted this line to produce oxygen radicals that could kill tumor cells. Extracting the protein of BIU87 affected by different drug concentrations, we studied the cell apoptotic protein and cell signaling pathway.Result:Experimental results showed a marked cell growth inhibitory effect of honokiol on human bladder cancer, and the data demonstrated significantly changes of cell growth cycle. As the honokiol concentration increased, G1 and SubG1 phase in cell cycle gradually increased. There existed apparent expression of apoptosis protein (Caspase3 and PARP) in BIU87 affected by honokiol, and CyclinD1, Cdk2, P21, P27, Bax, Bcl-2/Bcl-xL and MAPK signaling pathway protein JNK, P38, P42 that activated by oxygen free radicals.Conclusion:Honokiol inhibits the growth of human bladder cancer cells BIU87 and the drug can cause cell arrest in G1 and induce cell apoptosis. Through the MAPK signaling pathway activated by oxygen free radicals, the protein JNK, P38, P42 were overexpressed achieving the effect of inhibition on human bladder tumor growth.
-
Key words:
- honokiol /
- bladder cancer cell /
- apoptosis
-
[1] Siegel R, Naishadham D, Jemal A. Cancer Statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1):11-30. 2 Rosenberg J E, Carroll P R, Small E J, et al. Update on chemotherapy for advanced bladder cancer[J]. J Urol, 2005, 174(1):14-20. 3 Yang S, Song B, Dai S, et al. Effects of hypoxia-inducible factor-1α silencing on drug resistance of human pancreatic cancer cell line Patu8988/5-Fu[J]. Hepatogastroenterology, 2014, 61(136):2395-2401. 4 Hahm E, Singh S. Honokiol causes G0-G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level phosphorylation and inhibition of E2F1 transcriptional activity[J]. Mol Cancer Ther, 2007, 6(10):2686-2695. 5 Chen X R, Lu R, Dan H X, et al. Honokiol:a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells[J]. Int J Oral Sci, 2011, 3(1):34-42. 6 Chen F, Wang T, Wu Y F, et al. Honokiol:a potent chemotherapy candidate for human colorectal carcinoma[J]. World J Gastroenterol, 2004, 10(23):3459-3463. 7 Chilampalli C, Zhang X, Fahmy H, et al. Chemopreventive effects of combination of honokiol and magnolol with α-santalol on skin cancer developments[J]. Drug Discov Ther, 2013, 7(3):109-115. 8 Park E J, Min H Y, Chung H J, et al. Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells[J]. Cancer Lett, 2009, 277(2):133-140. 9 Yang S E, Hsieh M T, Tsai T H. Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiolinduced apoptosis in human squamous lung cancer CH27 cells[J]. Biochem Pharmacol, 2002, 63(9):1641-1651. 10 Kim G D, Bae S Y, Park H J, et al. Honokiol inhibits vascular vessel formation of mouse embryonic stem cell-derived endothelial cells via the suppression of PECAM and MAPK/mTOR signaling pathway[J]. Cell Physiol Biochem, 2012, 30 (3):758-770. 11 Bailey K, Wallace K, Smeester L, et al. Transcriptional modulation of the ERK1/2 MAPK and NF-κB pathways in human urothelial cells after trivalent arsenical exposure:Implications for urinary bladder cancer[J]. J Can Res, 2012, 21(1):57-68. 12 Hanahan D, Weinberg R A. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674. 13 Call J A, Eckhardt S G, Camidge D R. Targeted manipulation of apoptosis in cancer treatment[J]. Lancet Oncol, 2008, 9(10):1002-1011. 14 Kastan M B, Bartek J. Cell-cycle checkpoints and cancer[J]. Nature, 2004, 432(7015):316-323. 15 Vermeulen K, Van Bockstaele D R, Berneman Z N. The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer[J]. Cell Prolif, 2003, 36(3):131-149. 16 Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation:several Cdks, numerous cyclins and diverse compensatory mechanisms[J]. Oncogene, 2009, 20(28):2925-2939. 17 Chen C Y, Hsu Y L, Chen Y Y, et al. Isokotomolide A, a new butanolide extracted from the leaves of Cinnamomum kotoense, arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells[J]. Eur J Pharmacol, 2007, 574(2-3):94-102. 18 Fong W F, Tse A K, Poon K H, et al. Magnolol and honokiol enhance HL-60 human leukemia cell differentiation induced by 1,25-dihydroxyvitamin D3 and retinoic acid[J]. Int J Biochem Cell Biol, 2005, 37(2):427-441. 19 Karin M. Nuclear factor-kappaB in cancer development and progression[J]. Nature, 2006, 441(7092):431-436. 20 McConnell E J, Devapatla B, Yaddanapudi K. et al. The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein[J]. Oncotarget, 2015, 6(7):4649-4662. 21 Cassidy H, Radford R, Slyne J, et al. The role of MAPK in drug-induced kidney injury[J]. J Signal Transduct, 2012, 2012:463617. 22 Lan A, Liao X, Mo L, et al. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells[J]. PLoS One, 2011, 6(10):e25921.
计量
- 文章访问数: 53
- PDF下载数: 66
- 施引文献: 0