-
摘要: 外泌体是一种富含多种生物活性物质的直径30~100 nm的细胞外囊泡。前列腺癌来源的外泌体调控着肿瘤微环境,介导肿瘤的侵袭转移、免疫逃逸和耐药等过程。随着研究的深入,外泌体在肿瘤的早期诊断、治疗等方面显示出巨大的潜力。本文主要对前列腺癌外泌体的生物学功能以及在前列腺癌诊断和治疗中的应用前景作一综述。Abstract: Exosomes are extracellular vesicles with a diameter of 30-100 nm, containing various bioactive molecules. The exosomes derived from prostate cancer regulate the tumor microenvironment and mediate tumor invasion, metastasis, immune escape and drug resistance. As the research moves along, exosomes show great potential in the early diagnosis and therapeutics of tumors. In this review, we summarize the biological functions of prostate cancer exosomes and its potential applications in the diagnosis and therapeutics of prostate cancer.
-
Key words:
- prostate cancer /
- exosomes /
- miRNA /
- diagnosis /
- therapeutics
-
-
[1] 杨进益, 杨明州, 魏伟, 等.前列腺癌发生发展的流行病学研究进展[J].临床泌尿外科杂志, 2017, 32(9):721-725.
[2] Su S A, Xie Y, Fu Z, et al.Emerging role of exosome-mediated intercellular communication in vascular remodeling[J].Oncotarget, 2017, 8(15):25700-25712.
[3] Keerthikumar S, Chisanga D, Ariyaratne D, et al.ExoCarta:A Web-Based Compendium of Exosomal Cargo[J].J Mol Biol, 2016, 428:688-692.
[4] Tian T, Zhu Y L, Hu F H, et al.Dynamics of exosome internalization and trafficking[J].J Cell Physiol, 2013, 228(7):1487-1495.
[5] Franzen C A, Blackwell R H, Foreman K E, et al.Urinary Exosomes:The Potential for Biomarker Utility, Intercellular Signaling and Therapeutics in Urological Malignancy[J].J Urol, 2016, 195(5):1331-1339.
[6] Webber J P, Spary L K, Sanders A J, et al.Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes[J].Oncogene, 2015, 34(3):290-302.
[7] Bijnsdorp I V, Geldof A A, Lavaei M, et al.Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients[J].J Extracell Vesicles, 2013.
[8] Hoshino A, Costa-Silva B, Shen T L, et al.Tumour exosome integrins determine organotropic metastasis[J].Nature, 2015, 527(7578):329-335.
[9] Josson S, Gururajan M, Sung S Y, et al.Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis[J].Oncogene, 2015, 34(21):2690-2699.
[10] Sugatani T, Vacher J, Hruska K A.A microRNA expression signature of osteoclastogenesis[J].Blood, 2011, 117(13):3648-3657.
[11] Zhang H L, Qin X J, Cao D L, et al.An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions[J].Asian J Androl, 2013, 15(2):231-235.
[12] Lundholm M, Schroder M, Nagaeva O, et al.Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+T cells:mechanism of immune evasion[J].PLoS One, 2014, 9(9):e108925.
[13] Salimu J, Webber J, Gurney M, et al.Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes[J].J Extracell Vesicles, 2017, 6(1):1368823.
[14] Miyazaki T, Ikeda K, Sato W, et al.Extracellular vesicle-mediated EBAG9 transfer from cancer cells to tumor microenvironment promotes immune escape and tumor progression[J].Oncogenesis, 2018, 7(1):7.
[15] Saranchova I, Han J, Huang H, et al.Discovery of a Metastatic Immune Escape Mechanism Initiated by the Loss of Expression of the Tumour Biomarker Interleukin-33[J].Sci Rep, 2016, 6:30555.
[16] Abusamra A J, Zhong Z, Zheng X, et al.Tumor exosomes expressing Fas ligand mediate CD8+T-cell apoptosis[J].Blood Cells Mol Dis, 2005, 35(2):169-173.
[17] Kato T, Mizutani K, Kameyama K, et al.Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer[J].Urol Oncol, 2015, 33(9):385 e15-20.
[18] Corcoran C, Rani S, O'Driscoll L.miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression[J].Prostate, 2014, 74(13):1320-1334.
[19] Kharaziha P, Chioureas D, Rutishauser D, et al.Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel[J].Oncotarget, 2015, 6(25):21740-21754.
[20] 赵强, 张宁, 杜鹏, 等.前列腺癌循环肿瘤细胞研究进展[J].临床泌尿外科杂志, 2017, 32(2):152-156.
[21] Gallo A, Tandon M, Alevizos I, et al.The majority of microRNAs detectable in serum and saliva is concentrated in exosomes[J].PLoS One, 2012, 7(3):e30679.
[22] Bryant R J, Pawlowski T, Catto J W, et al.Changes in circulating microRNA levels associated with prostate cancer[J].Br J Cancer, 2012, 106(4):768-774.
[23] Li Z, Ma Y Y, Wang J, et al.Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients[J].Onco Targets Ther, 2016, 9:139-148.
[24] Huang X, Yuan T, Liang M, et al.Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer[J].Eur Urol, 2015, 67(1):33-41.
[25] Bhagirath D, Yang T L, Bucay N, et al.microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer[J].Cancer Res, 2018, 78(7):1833-1844.
[26] Mahn R, Heukamp L C, Rogenhofer S, et al.Circulating microRNAs(miRNA) in serum of patients with prostate cancer[J].Urology, 2011, 77(5):1265.e9-16.
[27] Rodriguez M, Bajo-Santos C, Hessvik N P, et al.Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes[J].Mol Cancer, 2017, 16(1):156.
[28] Samsonov R, Shtam T, Burdakov V, et al.Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis:Application for prostate cancer diagnostic[J].Prostate, 2016, 76(1):68-79.
[29] Webber J, Stone T C, Katilius E, et al.Proteomics analysis of cancer exosomes using a novel modified aptamer-based array(SOMAscan) platform[J].Mol Cell Proteomics, 2014, 13(4):1050-1064.
[30] Hosseini-Beheshti E, Pham S, Adomat H, et al.Exosomes as biomarker enriched microvesicles:characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes[J].Mol Cell Proteomics, 2012, 11(10):863-885.
[31] Gabriel K, Ingram A, Austin R, et al.Regulation of the tumor suppressor PTEN through exosomes:a diagnostic potential for prostate cancer[J].PLoS One, 2013, 8(7):e70047.
[32] Kawakami K, Fujita Y, Matsuda Y, et al.Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer[J].BMC Cancer, 2017, 17(1):316.
[33] Khan S, Jutzy J M, Valenzuela M M, et al.Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer[J].PLoS One, 2012, 7(10):e46737.
[34] Singh A, Fedele C, Lu H, et al.Exosome-mediated Transfer of alphavbeta3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype[J].Mol Cancer Res, 2016, 14(11):1136-1146.
[35] Wang L, Skotland T, Berge V, et al.Exosomal proteins as prostate cancer biomarkers in urine:From mass spectrometry discovery to immunoassay-based validation[J].Eur J Pharm Sci, 2017, 98:80-85.
[36] Nilsson J, Skog J, Nordstrand A, et al.Prostate cancer-derived urine exosomes:a novel approach to biomarkers for prostate cancer[J].Br J Cancer, 2009, 100(10):1603-1607.
[37] Fujita K, Kume H, Matsuzaki K, et al.Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer[J].Sci Rep, 2017, 7:42961.
[38] Sequeiros T, Rigau M, Chiva C, et al.Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer[J].Oncotarget, 2017, 8(3):4960-4976.
[39] Saari H, Lazaro-Ibanez E, Viitala T, et al.Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells[J].J Control Release, 2015, 220(PtB):727-737.
[40] Takahara K, Ii M, Inamoto T, et al.microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer[J].Stem Cells Dev, 2016, 25(17):1290-1298.
[41] Liu H, Chen L, Peng Y, et al.Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy[J].Oncotarget, 2018, 9(2):2887-2894.
[42] Rountree R B, Mandl S J, Nachtwey J M, et al.Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy[J].Cancer Res, 2011, 71(15):5235-5244.
[43] Zhang P, Zhang L, Qin Z, et al.Genetically Engineered Liposome-like Nanovesicles as Active Targeted Transport Platform[J].Adv Mater, 2018, 30(7).
-
计量
- 文章访问数: 310
- PDF下载数: 277
- 施引文献: 0