氯喹抑制高糖环境下前列腺癌PC3细胞增殖机制研究

江绍钦, 李梦强, 陈珍霖, 等. 氯喹抑制高糖环境下前列腺癌PC3细胞增殖机制研究[J]. 临床泌尿外科杂志, 2021, 36(1): 46-50. doi: 10.13201/j.issn.1001-1420.2021.01.010
引用本文: 江绍钦, 李梦强, 陈珍霖, 等. 氯喹抑制高糖环境下前列腺癌PC3细胞增殖机制研究[J]. 临床泌尿外科杂志, 2021, 36(1): 46-50. doi: 10.13201/j.issn.1001-1420.2021.01.010
JIANG Shaoqin, LI Mengqiang, CHEN Zhenlin, et al. Inhibition of chloroquine on the proliferation of prostate cancer cell line PC3 in high glucose condition[J]. J Clin Urol, 2021, 36(1): 46-50. doi: 10.13201/j.issn.1001-1420.2021.01.010
Citation: JIANG Shaoqin, LI Mengqiang, CHEN Zhenlin, et al. Inhibition of chloroquine on the proliferation of prostate cancer cell line PC3 in high glucose condition[J]. J Clin Urol, 2021, 36(1): 46-50. doi: 10.13201/j.issn.1001-1420.2021.01.010

氯喹抑制高糖环境下前列腺癌PC3细胞增殖机制研究

  • 基金项目:

    福建省科技创新联合资金项目(No:2017Y9023);福建省自然科学基金项目(No:2017J01203);福建医科大学启航基金(No:2016QH032,No:2018QH1044)

详细信息
    通讯作者: 许恩赐,E-mail:xuenci0531@163.com
  • 中图分类号: R737.25

Inhibition of chloroquine on the proliferation of prostate cancer cell line PC3 in high glucose condition

More Information
  • 目的:研究氯喹是否能通过自噬和活性氧(ROS)通路抑制高糖诱导的前列腺癌PC3细胞的增殖。方法:PC3细胞培养后分为4组(正常糖组、高糖组、正常糖+氯喹组、高糖+氯喹组)予相应干预。运用CCK-8实验检测细胞的增殖能力;Western blot检测自噬相关蛋白LC3的表达;DCFH-DA活性氧荧光探针检测细胞中ROS水平;JC-1法检测细胞线粒体膜电位的去极化。结果:CCK-8实验结果表明氯喹能够显著抑制高糖环境下PC3细胞的增殖。Western blot实验结果显示氯喹会使PC3细胞LC3-Ⅱ/Ⅰ比值升高,说明细胞自噬显著被抑制。DCFH-DA探针检测结果表明,氯喹能够显著上调高糖环境下PC3细胞中ROS水平。JC-1检测结果表明,氯喹能够诱导高糖环境下PC3细胞中线粒体膜电位去极化。结论:氯喹通过自噬和ROS通路抑制高糖环境下前列腺癌细胞的增殖。
  • 加载中
  • [1]

    闫厚煜, 邢金春, 张开颜, 等.前列腺癌的早期诊断研究进展[J].临床泌尿外科杂志, 2020, 35(3):242-246.

    [2]

    Chen W, Zheng R, Baade PD, et al.Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2):115-132.

    [3]

    Wu C, Moreira DM, Gerber L, et al.Diabetes and prostate cancer risk in the REDUCE trial[J].Prostate Cancer Prostatic Dis, 2011, 14(4):326-331.

    [4]

    Victor VM, Rocha M, Herance R, et al.Oxidative stress and mitochondrial dysfunction in type 2 diabetes[J].Curr Pharm Des, 2011, 17(36):3947-3958.

    [5]

    韩丽珠, 石慧, 肖洪涛, 等.羟氯喹在肿瘤治疗中的研究现状[J].中国临床药理学杂志, 2018, 34(16):2022-2025.

    [6]

    郭亚萍, 陈璐瑶, 吴紫璇, 等.人参皂苷Rg3差异调节前列腺癌细胞PC3和DU145增殖[J].天津医药, 2019, 47(11):1.

    [7]

    Zelenko Z, Gallagher EJ.Diabetes and cancer[J].Endocrinol Metab Clin North Am, 2014, 43(1):167-185.

    [8]

    Al-Bari MA.Chloroquine analogues in drug discovery:new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases[J].J Antimicrob Chemother, 2015, 70(6):1608-1621.

    [9]

    Ha J, Guan KL, Kim J.AMPK and autophagy in glucose/glycogen metabolism[J].Mol Aspects Med, 2015, 46:46-62.

    [10]

    Maiuri MC, Tasdemir E, Criollo A, et al.Control of autophagy by oncogenes and tumor suppressor genes[J].Cell Death Differ, 2009, 16(1):87-93.

    [11]

    Yu T, Jhun BS, Yoon Y.High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission[J].Antioxid Redox Signal, 2011, 14(3):425-437.

    [12]

    Park EY, Park JB.High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J].Int Orthop, 2013, 37(12):2507-2514.

    [13]

    Ma T, Zhu J, Chen X, et al.High glucose induces autophagy in podocytes[J].Exp Cell Res, 2013, 319(6):779-789.

    [14]

    Mattson MP, Gleichmann M, Cheng A.Mitochondria in neuroplasticity and neurological disorders[J].Neuron, 2008, 60(5):748-766.

    [15]

    Murphy MP.How mitochondria produce reactive oxygen species[J].Biochem J, 2009, 417(1):1-13.

  • 加载中
计量
  • 文章访问数:  281
  • PDF下载数:  250
  • 施引文献:  0
出版历程
收稿日期:  2020-06-06

目录