外泌体在神经内分泌前列腺癌中的研究进展

王清华, 郭佳. 外泌体在神经内分泌前列腺癌中的研究进展[J]. 临床泌尿外科杂志, 2021, 36(5): 402-405,411. doi: 10.13201/j.issn.1001-1420.2021.05.015
引用本文: 王清华, 郭佳. 外泌体在神经内分泌前列腺癌中的研究进展[J]. 临床泌尿外科杂志, 2021, 36(5): 402-405,411. doi: 10.13201/j.issn.1001-1420.2021.05.015
WANG Qinghua, GUO Jia. Research progress of exosomes in neuroendocrine prostate cancer[J]. J Clin Urol, 2021, 36(5): 402-405,411. doi: 10.13201/j.issn.1001-1420.2021.05.015
Citation: WANG Qinghua, GUO Jia. Research progress of exosomes in neuroendocrine prostate cancer[J]. J Clin Urol, 2021, 36(5): 402-405,411. doi: 10.13201/j.issn.1001-1420.2021.05.015

外泌体在神经内分泌前列腺癌中的研究进展

  • 基金项目:

    国家自然科学基金青年科学基金项目(No:81702539)

详细信息
    通讯作者: 郭佳,E-mail:jaja_1109@163.com
  • 中图分类号: R737.25

Research progress of exosomes in neuroendocrine prostate cancer

More Information
  • 外泌体是直径介于40~150 nm之间、内部包含多种生物活性分子的细胞外囊泡。外泌体可以通过传递某些物质参与到多种肿瘤的发生和发展,包括肿瘤微环境重建、血管生成、细胞自噬、侵袭转移、免疫逃避和耐药等。前列腺癌来源的外泌体在调控前列腺腺癌向神经内分泌表型转化过程中发挥着重要作用。本文就外泌体在神经内分泌前列腺癌中的研究进展作一综述。
  • 加载中
  • [1]

    Koritzinsky EH,Street JM,Star RA,et al.Quantification of Exosomes[J].J Cell Physiol,2017,232(7):1587-1590.

    [2]

    Rajagopal C,Harikumar KB.The Origin and Functions of Exosomes in Cancer[J].Front Oncol,2018,8:66.

    [3]

    Tschuschke M,Kocherova I,Bryja A,et al.Inclusion Biogenesis,Methodsof Isolation and Clinical Application of Human Cellular Exosomes[J].J Clin Med,2020,9(2):436.

    [4]

    Bu H,He D,He X,et al.Exosomes:Isolation,Analysis,and Applications in Cancer Detection and Therapy[J].Chembiochem,2019,20(4):451-461.

    [5]

    Gurunathan S,Kang MH,Jeyaraj M,et al.Review of the Isolation,Characterization,Biological Function,and Multifarious Therapeutic Approaches of Exosomes[J].Cells,2019,8(4):307.

    [6]

    Shiao SL,Chu GC,Chung LW.Regulation of prostate cancer progression by the tumor microenvironment[J].Cancer Lett,2016,380(1):340-348.

    [7]

    Mashouri L,Yousefi H,Aref A R,et al.Exosomes:composition,biogenesis,and mechanisms in cancer metastasis and drug resistance[J].Mol Cancer,2019,18(1):75.

    [8]

    Siegel RL,Miller KD,Jemal A.Cancer statistics,2020[J].CA Cancer J Clin,2020,70(1):7-30.

    [9]

    Martínez-Breijo S,Chantada-Abal V,Aller-Rodríguez M,et al.Castration resistance mechanisms in prostate cancer[J].Arch Esp Urol,2018,71(8):628-638.

    [10]

    Soundararajan R,Paranjape AN,Maity S,et al.EMT,stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers[J].Biochim Biophys Acta Rev Cancer,2018,1870(2):229-238.

    [11]

    Lu C,Qie Y,Liu S,et al.Selective Actionable and Druggable Protein Kinases Drive the Progression of Neuroendocrine Prostate Cancer[J].DNA Cell Biol,2018,37(9):758-766.

    [12]

    Tsaur I,Heidegger I,Kretschmer A,et al.Aggressive variants of prostate cancer-Are we ready to apply specific treatment right now?[J].Cancer Treat Rev,2019,75:20-26.

    [13]

    Patel GK,Chugh N,Tripathi M.Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play[J].Cancers(Basel),2019,11(10):1405.

    [14]

    Teo MY,Rathkopf DE,Kantoff P.Treatment of Advanced Prostate Cancer[J].Annu Rev Med,2019,70:479-499.

    [15]

    Liu CM,Hsieh CL,Shen CN,et al.Exosomes from the tumor microenvironment as reciprocal regulators that enhance prostate cancer progression[J].Int J Urol,2016,23(9):734-744.

    [16]

    Lin LC,Gao AC,Lai CH,et al.Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein(ADRP)delivered by exosomes[J].Cancer Lett,2017,391:74-82.

    [17]

    Nwosu ZC,Ebert MP,Dooley S,et al.Caveolin-1 in the regulation of cell metabolism:a cancer perspective[J].Mol Cancer,2016,15(1):71.

    [18]

    Lin CJ,Yun EJ,Lo UG,et al.The paracrine induction of prostate cancer progression by caveolin-1[J].Cell Death Dis,2019,10(11):834.

    [19]

    Lu Q,Zhang J,Allison R,et al.Identification of extracellular delta-catenin accumulation for prostate cancer detection[J].Prostate,2009,69(4):411-418.

    [20]

    Webber JP,Spary LK,Sanders AJ,et al.Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes[J].Oncogene,2015,34(3):290-302.

    [21]

    Miles FL,Kurtoglu S,Ahmer C,et al.Transforming growth factor-β signaling induced during prostate cancer cell death and neuroendocrine differentiation is mediated by bone marrow stromal cells[J].Prostate,2015,75(15):1802-1813.

    [22]

    Mounir Z,Lin F,Lin V G,et al.TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation[J].Oncogene,2015,34(29):3815-3825.

    [23]

    Zhan F,Shen J,Wang R,et al.Role of exosomal small RNA in prostate cancer metastasis[J].Cancer Manag Res,2018,10:4029-4038.

    [24]

    Batra JS,Girdhani S,Hlatky L.A Quest to Identify Prostate Cancer Circulating Biomarkers with a Bench-to-Bedside Potential[J].J Biomark,2014,2014:321680.

    [25]

    Zheng C,Yinghao S,Li J.MiR-221 expression affects invasion potential of human prostate carcinoma cell lines by targeting DVL2[J].Med Oncol,2012,29(2):815-822.

    [26]

    Corcoran C,Rani S,O'Driscoll L.miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression[J].Prostate,2014,74(13):1320-1334.

    [27]

    Ding M,Lin B,Li T,et al.A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells[J].Oncotarget,2015,6(10):7686-7700.

    [28]

    Sánchez CA,Andahur EI,Valenzuela R,et al.Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche[J].Oncotarget,2016,7(4):3993-4008.

    [29]

    Nabavi N,Saidy N,Venalainen E,et al.miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer[J].Sci Rep,2017,7(1):4079.

    [30]

    Ramnarine VR,Alshalalfa M,Mo F,et al.The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications[J].Gigascience,2018,7(6):giy050.

    [31]

    Crea F,Venalainen E,Ci X,et al.The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer[J].Epigenomics,2016,8(5):721-731.

    [32]

    Luo J,Wang K,Yeh S,et al.LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling[J].Nat Commun,2019,10(1):2571.

    [33]

    Panigrahi GK,Deep G.Exosomes-based biomarker discovery for diagnosis and prognosis of prostate cancer[J].Front Biosci(Landmark Ed),2017,22:1682-1696.

    [34]

    Brychtova V,Mohtar A,Vojtesek B,et al.Mechanisms of anterior gradient-2 regulation and function in cancer[J].Semin Cancer Biol,2015,33:16-24.

    [35]

    Neeb A,Hefele S,Bormann S,et al.Splice variant transcripts of the anterior gradient 2 gene as a marker of prostate cancer[J].Oncotarget,2014,5(18):8681-8689.

    [36]

    Kani K,Malihi PD,Jiang Y,et al.Anterior gradient 2(AGR2):blood-based biomarker elevated in metastatic prostate cancer associated with the neuroendocrine phenotype[J].Prostate,2013,73(3):306-315.

    [37]

    Trerotola M,Ganguly KK,Fazli L,et al.Erratum:Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts[J].Oncotarget,2015,6(32):34038.

    [38]

    Hsu EC,Rice MA,Bermudez A,et al.Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1[J].Proc Natl Acad Sci U S A,2020,117(4):2032-2042.

  • 加载中
计量
  • 文章访问数:  601
  • PDF下载数:  1147
  • 施引文献:  0
出版历程
收稿日期:  2020-05-09

目录