泌尿系结石与肠道微生态关系研究进展

刘志楠, 徐卫波, 刘博文, 等. 泌尿系结石与肠道微生态关系研究进展[J]. 临床泌尿外科杂志, 2022, 37(2): 156-159. doi: 10.13201/j.issn.1001-1420.2022.02.016
引用本文: 刘志楠, 徐卫波, 刘博文, 等. 泌尿系结石与肠道微生态关系研究进展[J]. 临床泌尿外科杂志, 2022, 37(2): 156-159. doi: 10.13201/j.issn.1001-1420.2022.02.016
LIU Zhinan, XU Weibo, LIU Bowen, et al. Research progress of the relationship between urinary calculi and intestinal microecology[J]. J Clin Urol, 2022, 37(2): 156-159. doi: 10.13201/j.issn.1001-1420.2022.02.016
Citation: LIU Zhinan, XU Weibo, LIU Bowen, et al. Research progress of the relationship between urinary calculi and intestinal microecology[J]. J Clin Urol, 2022, 37(2): 156-159. doi: 10.13201/j.issn.1001-1420.2022.02.016

泌尿系结石与肠道微生态关系研究进展

详细信息

Research progress of the relationship between urinary calculi and intestinal microecology

More Information
  • 泌尿系结石是最常见的泌尿外科疾病之一,在泌尿外科住院患者中占居首位,并且近年来的发病率正逐年上升。导致尿石形成和复发的危险因素很多,主要与遗传、代谢及环境因素有关,其中以草酸代谢异常导致的草酸钙结石最为常见,随着医学发展,对于泌尿系结石已经形成一套比较完善的诊疗体系,近年来尿石的成因及预防开始引起了越来越多的关注。肠道微生态体系是以肠道正常定植菌群为核心的人体微生态系统,与肥胖、糖尿病、炎性肠病等多种人体疾病有直接关系,目前发现肠道微生物可能在泌尿系结石的发病机制和预防中起作用,其中研究较多的产甲酸草酸杆菌参与人体内草酸的代谢,可能通过“肠道微生态-肾脏”轴参与泌尿系结石的形成。本综述主要阐述泌尿系结石与肠道微生态关系的研究进展,为泌尿系结石的成因及预防提供参考。
  • 加载中
  • [1]

    Scales CD Jr, Tasian GE, Schwaderer AL, et al. Urinary Stone Disease: Advancing Knowledge, Patient Care, and Population Health[J]. Clin J Am Soc Nephrol, 2016, 11(7): 1305-1312. doi: 10.2215/CJN.13251215

    [2]

    叶章群, 周辉. 泌尿系结石基础研究及临床新进展[J]. 中华泌尿外科杂志, 2017, 38(9): 644-649. doi: 10.3760/cma.j.issn.1000-6702.2017.09.002

    [3]

    Zeng G, Mai Z, Xia S, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017, 120(1): 109-116. doi: 10.1111/bju.13828

    [4]

    林甫俊, 王忠康, 潘建刚. 代谢综合征与泌尿系结石的研究进展[J]. 国际泌尿系统杂志, 2019, 39(3): 553-555. doi: 10.3760/cma.j.issn.1673-4416.2019.03.049

    [5]

    Gao X, Xie Q, Liu L, et al. Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lam. -supplemented diet is related to the modulation of gut microbiota in mice[J]. Appl Microbiol Biotechnol, 2017, 101(12): 5115-5130. doi: 10.1007/s00253-017-8233-5

    [6]

    Guarner F, Malagelada JR. Gut flora in health and disease[J]. Lancet, 2003, 361(9356): 512-529. doi: 10.1016/S0140-6736(03)12489-0

    [7]

    Hagan T, Cortese M, Rouphael N, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans[J]. Cell, 2019, 178(6): 1313-1328. e13. doi: 10.1016/j.cell.2019.08.010

    [8]

    Org E, Blum Y, Kasela S, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort[J]. Genome Biol, 2017, 18(1): 70. doi: 10.1186/s13059-017-1194-2

    [9]

    Alagiakrishnan K, Halverson T. Holistic perspective of the role of gut microbes in diabetes mellitus and its management[J]. World J Diabetes, 2021, 12(9): 1463-1478. doi: 10.4239/wjd.v12.i9.1463

    [10]

    门昌君, 张国梁, 王飒. 肠道微生态与人体疾病相关性研究现状[J]. 继续医学教育, 2020, 34(3): 142-145. doi: 10.3969/j.issn.1004-6763.2020.03.076

    [11]

    Stern JM, Moazami S, Qiu Y, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers[J]. Urolithiasis, 2016, 44(5): 399-407. doi: 10.1007/s00240-016-0882-9

    [12]

    Kelsey R. Stones: Gut microbiome is unique in kidney stone disease[J]. Nat Rev Urol, 2016, 13(7): 368.

    [13]

    Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up[J]. J Am Soc Nephrol, 2004, 15(12): 3225-3232. doi: 10.1097/01.ASN.0000146012.44570.20

    [14]

    Ritz E. Intestinal-renal syndrome: mirage or reality?[J]. Blood Purif, 2011, 31(1-3): 70-76. doi: 10.1159/000321848

    [15]

    Everard A, Cani PD. Diabetes, obesity and gut microbiota[J]. Best Pract Res Clin Gastroenterol, 2013, 27(1): 73-83. doi: 10.1016/j.bpg.2013.03.007

    [16]

    Spatola L, Ferraro PM, Gambaro G, et al. Metabolic syndrome and uric acid nephrolithiasis: insulin resistance in focus[J]. Metabolism, 2018, 83: 225-233. doi: 10.1016/j.metabol.2018.02.008

    [17]

    Carbone A, Al Salhi Y, Tasca A, et al. Obesity and kidney stone disease: a systematic review[J]. Minerva Urol Nefrol, 2018, 70(4): 393-400.

    [18]

    Ticinesi A, Nouvenne A, Meschi T. Gut microbiome and kidney stone disease: not just an Oxalobacter story[J]. Kidney Int, 2019, 96(1): 25-27. doi: 10.1016/j.kint.2019.03.020

    [19]

    Assimos DG. Re: Oxalobacter formigenes-Associated Host Features and Microbial Community Structures Examined Using the American Gut Project[J]. J Urol, 2018, 199(4): 888.

    [20]

    Ticinesi A, Milani C, Guerra A, et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers[J]. Gut, 2018, 67(12): 2097-2106. doi: 10.1136/gutjnl-2017-315734

    [21]

    Mehta M, Goldfarb DS, Nazzal L. The role of the microbiome in kidney stone formation[J]. Int J Surg, 2016, 36(Pt D): 607-612.

    [22]

    Denburg MR, Koepsell K, Lee JJ, et al. Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease[J]. J Am Soc Nephrol, 2020, 31(6): 1358-1369. doi: 10.1681/ASN.2019101131

    [23]

    Sakhaee K. Unraveling the mechanisms of obesity-induced hyperoxaluria[J]. Kidney Int, 2018, 93(5): 1038-1040. doi: 10.1016/j.kint.2018.01.012

    [24]

    Zhou J, Jin J, Li X, et al. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-L-proline-induced calcium oxalate urolithiasis in rats[J]. Urolithiasis, 2018, 46(3): 231-241. doi: 10.1007/s00240-017-0985-y

    [25]

    Arvans D, Jung YC, Antonopoulos D, et al. Oxalobacter formigenes-Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells[J]. J Am Soc Nephrol, 2017, 28(3): 876-887. doi: 10.1681/ASN.2016020132

    [26]

    Lee JA, Stern JM. Understanding the Link Between Gut Microbiome and Urinary Stone Disease[J]. Curr Urol Rep, 2019, 20(5): 19. doi: 10.1007/s11934-019-0882-8

    [27]

    Kaufman DW, Kelly JP, Curhan GC, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones[J]. J Am Soc Nephrol, 2008, 19(6): 1197-1203. doi: 10.1681/ASN.2007101058

    [28]

    Stern JM, Urban-Maldonado M, Usyk M, et al. Fecal transplant modifies urine chemistry risk factors for urinary stone disease[J]. Physiol Rep, 2019, 7(4): e14012. doi: 10.14814/phy2.14012

    [29]

    Abratt VR, Reid SJ. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease[J]. Adv Appl Microbiol, 2010, 72: 63-87.

    [30]

    Siener R, Bade DJ, Hesse A, et al. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria[J]. J Transl Med, 2013, 11: 306. doi: 10.1186/1479-5876-11-306

    [31]

    Hervé V, Junier T, Bindschedler S, et al. Diversity and ecology of oxalotrophic bacteria[J]. World J Microbiol Biotechnol, 2016, 32(2): 28. doi: 10.1007/s11274-015-1982-3

    [32]

    Miller AW, Choy D, Penniston KL, et al. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis[J]. Kidney Int, 2019, 96(1): 180-188. doi: 10.1016/j.kint.2019.02.012

    [33]

    国立东, 王丽群, 于纯淼, 等. 乳酸菌降解草酸盐活性及机制研究进展[J]. 食品科学, 2018, 39(3): 324-329. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201803048.htm

    [34]

    Weese JS, Weese HE, Yuricek L, et al. Oxalate degradation by intestinal lactic acid bacteria in dogs and cats[J]. Vet Microbiol, 2004, 101(3): 161-166. doi: 10.1016/j.vetmic.2004.03.017

    [35]

    Mogna L, Pane M, Nicola S, et al. Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans?[J]. J Clin Gastroenterol, 2014, 48 Suppl 1: S91-95.

    [36]

    Federici F, Vitali B, Gotti R, et al. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis[J]. Appl Environ Microbiol, 2004, 70(9): 5066-5073. doi: 10.1128/AEM.70.9.5066-5073.2004

    [37]

    Turroni S, Vitali B, Bendazzoli C, et al. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus[J]. J Appl Microbiol, 2007, 103(5): 1600-1609. doi: 10.1111/j.1365-2672.2007.03388.x

    [38]

    Kwak C, Jeong BC, Ku JH, et al. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study[J]. Urol Res, 2006, 34(4): 265-270. doi: 10.1007/s00240-006-0054-4

    [39]

    Tang R, Jiang Y, Tan A, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones[J]. Urolithiasis, 2018, 46(6): 503-514. doi: 10.1007/s00240-018-1037-y

    [40]

    Gupta S, Singh Kanwar S. The influence of dysbiosis on kidney stones that risk up renal cell carcinoma(RCC)[J]. Semin Cancer Biol, 2021, 70: 134-138. doi: 10.1016/j.semcancer.2020.06.011

    [41]

    Barr-Beare E, Saxena V, Hilt EE, et al. The Interaction between Enterobacteriaceae and Calcium Oxalate Deposits[J]. PLoS One, 2015, 10(10): e0139575. doi: 10.1371/journal.pone.0139575

    [42]

    Xie J, Huang JS, Huang XJ, et al. Profiling the urinary microbiome in men with calcium-based kidney stones[J]. BMC Microbiol, 2020, 20(1): 41. doi: 10.1186/s12866-020-01734-6

  • 加载中
计量
  • 文章访问数:  1285
  • PDF下载数:  171
  • 施引文献:  0
出版历程
收稿日期:  2021-04-05
刊出日期:  2022-02-06

目录