前列腺癌中雄激素受体信号通路与其他信号通路的相互作用

丁银芳, 田伟, 叶利洪. 前列腺癌中雄激素受体信号通路与其他信号通路的相互作用[J]. 临床泌尿外科杂志, 2022, 37(4): 319-325. doi: 10.13201/j.issn.1001-1420.2022.04.016
引用本文: 丁银芳, 田伟, 叶利洪. 前列腺癌中雄激素受体信号通路与其他信号通路的相互作用[J]. 临床泌尿外科杂志, 2022, 37(4): 319-325. doi: 10.13201/j.issn.1001-1420.2022.04.016
DING Yinfang, TIAN Wei, YE Lihong. Interactions between androgen receptor and other molecular pathways in prostate cancer[J]. J Clin Urol, 2022, 37(4): 319-325. doi: 10.13201/j.issn.1001-1420.2022.04.016
Citation: DING Yinfang, TIAN Wei, YE Lihong. Interactions between androgen receptor and other molecular pathways in prostate cancer[J]. J Clin Urol, 2022, 37(4): 319-325. doi: 10.13201/j.issn.1001-1420.2022.04.016

前列腺癌中雄激素受体信号通路与其他信号通路的相互作用

详细信息
    通讯作者: 叶利洪,E-mail:ylh7966@126.com

    审校者

  • 中图分类号: R737.25

Interactions between androgen receptor and other molecular pathways in prostate cancer

More Information
  • 前列腺癌(PCa)的发病率逐年上升,雄激素受体(AR)被认为是PCa生长和进展的主要因素,雄激素剥夺治疗(ADT)是激素敏感性前列腺癌治疗的基石,但大多数患者最终会发展成为去势抵抗性前列腺癌(CRPC)。近年来不断有研究发现在PCa中存在多种信号通路,协同AR通路促进PCa发生和进展,如PTEN/PI3K/AKT/mTOR通路、WNT通路、神经内分泌模式、DNA修复途径、TMPRSS2 / ETS融合、细胞周期途径、免疫系统异常、TGF-β通路。在此综述中,我们讨论了在PCa中AR信号与其他信号通路之间的相互作用。
  • 加载中
  • [1]

    Freddie B, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clini, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [2]

    Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside[J]. Clin Biochem Rev, 2016, 37(1): 3-15.

    [3]

    Leung JK, Sadar MD. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer[J]. Front Endocrinol(Lausanne), 2017, 8: 2.

    [4]

    Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance[J]. Cell Signal, 2016, 28(5): 348-356. doi: 10.1016/j.cellsig.2016.01.013

    [5]

    Kim HJ, Lee WJ. Insulin-like growth factor-Ⅰ induces androgen receptor activation in differentiating C2C12 skeletal muscle cells[J]. Mol Cells, 2009, 28(3): 189-194. doi: 10.1007/s10059-009-0118-8

    [6]

    Culig Z, Klocker H, Bartsch G, et al. Androgen receptors in prostate cancer[J]. J Urol, 2003, 170(4 Pt 1): 1363-1369.

    [7]

    Tu JJ, Rohan S, Kao J, et al. Gene fusions between TMPRSS2 and ETS family genes in prostate cancer: frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues[J]. Mod Pathol, 2007, 20(9): 921-928. doi: 10.1038/modpathol.3800903

    [8]

    Massie CE, Lynch A, Ramos-Montoya A, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis[J]. EMBO J, 2011, 30(13): 2719-2733. doi: 10.1038/emboj.2011.158

    [9]

    Baca SC, Prandi D, Lawrence MS, et al. Punctuated evolution of prostate cancer genomes[J]. Cell, 2013, 153(3): 666-677. doi: 10.1016/j.cell.2013.03.021

    [10]

    Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001

    [11]

    Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer[J]. Cancer Cell, 2011, 19(5): 575-586. doi: 10.1016/j.ccr.2011.04.008

    [12]

    Mulholland DJ, Tran LM, Li Y, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth[J]. Cancer Cell, 2011, 19(6): 792-804. doi: 10.1016/j.ccr.2011.05.006

    [13]

    Murillo-Garzón V, Kypta R. WNT signalling in prostate cancer[J]. Nat Rev Urol, 2017, 14(11): 683-696. doi: 10.1038/nrurol.2017.144

    [14]

    Beltran H, Yelensky R, Frampton GM, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity[J]. Eur Urol, 2013, 63(5): 920-926. doi: 10.1016/j.eururo.2012.08.053

    [15]

    Zong Y, Huang J, Sankarasharma D, et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling[J]. Proc Natl Acad Sci USA, 2012, 109(50): E3395-3404.

    [16]

    Dakhova O, Rowley D, Ittmann M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo[J]. Clin Cancer Res, 2014, 20(1): 100-109. doi: 10.1158/1078-0432.CCR-13-1184

    [17]

    Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[J]. Nat Med, 2012, 18(9): 1359-1368. doi: 10.1038/nm.2890

    [18]

    Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics[J]. Cell Res, 2009, 19(6): 683-697. doi: 10.1038/cr.2009.43

    [19]

    Lee E, Ha S, Logan SK. Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells[J]. PLoS One, 2015, 10(10): e0141589. doi: 10.1371/journal.pone.0141589

    [20]

    Ayala GE, Dai H, Powell M, et al. Cancer-related axonogenesis and neurogenesis in prostate cancer[J]. Clin Cancer Res, 2008, 14(23): 7593-7603. doi: 10.1158/1078-0432.CCR-08-1164

    [21]

    Zahalka AH, Arnal-Estapé A, Maryanovich M, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J]. Science, 2017, 358(6361): 321-326. doi: 10.1126/science.aah5072

    [22]

    Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013, 341(6142): 1236361. doi: 10.1126/science.1236361

    [23]

    Coarfa C, Florentin D, Putluri N, et al. Influence of the neural microenvironment on prostate cancer[J]. Prostate, 2018, 78(2): 128-139. doi: 10.1002/pros.23454

    [24]

    Rutledge A, Jobling P, Walker MM, et al. Spinal Cord Injuries and Nerve Dependence in Prostate Cancer[J]. Trends Cancer, 2017, 3(12): 812-815. doi: 10.1016/j.trecan.2017.10.001

    [25]

    Lu H, Liu X, Guo F, et al. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16, 825 patients[J]. Onco Targets Ther, 2015, 8: 985-990.

    [26]

    Reeves FA, Battye S, Roth H, et al. Prostatic nerve subtypes independently predict biochemical recurrence in prostate cancer[J]. J Clin Neurosci, 2019, 63: 213-219. doi: 10.1016/j.jocn.2019.01.052

    [27]

    March B, Faulkner S, Jobling P, et al. Tumour innervation and neurosignalling in prostate cancer[J]. Nat Rev Urol, 2020, 17(2): 119-130. doi: 10.1038/s41585-019-0274-3

    [28]

    Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045

    [29]

    Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer[J]. Cancer Discov, 2017, 7(7): 736-749. doi: 10.1158/2159-8290.CD-16-1174

    [30]

    Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes[J]. Cancer Discov, 2011, 1(6): 466-468. doi: 10.1158/2159-8290.CD-11-0259

    [31]

    Mu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. doi: 10.1126/science.aah4307

    [32]

    Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. doi: 10.1126/science.aah4199

    [33]

    Dardenne E, Beltran H, Benelli M, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer[J]. Cancer Cell, 2016, 30(4): 563-577. doi: 10.1016/j.ccell.2016.09.005

    [34]

    Lee JK, Phillips JW, Smith BA, et al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells[J]. Cancer Cell, 2016, 29(4): 536-547. doi: 10.1016/j.ccell.2016.03.001

    [35]

    Dardenne E, Beltran H, Benelli M, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer[J]. Cancer Cell, 2016, 30(4): 563-577. doi: 10.1016/j.ccell.2016.09.005

    [36]

    Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045

    [37]

    Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets[J]. Cancer Discov, 2011, 1(6): 487-495. doi: 10.1158/2159-8290.CD-11-0130

    [38]

    Rapa I, Volante M, Migliore C, et al. Human ASH-1 promotes neuroendocrine differentiation in androgen deprivation conditions and interferes with androgen responsiveness in prostate cancer cells[J]. Prostate, 2013, 73(11): 1241-1249. doi: 10.1002/pros.22679

    [39]

    McKeithen D, Graham T, Chung LW, et al. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells[J]. Prostate, 2010, 70(9): 982-992. doi: 10.1002/pros.21132

    [40]

    Mateo J, Carreira S, Sandhu S, et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer[J]. N Engl J Med, 2015, 373(18): 1697-1708. doi: 10.1056/NEJMoa1506859

    [41]

    Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001

    [42]

    Goodwin JF, Schiewer MJ, Dean JL, et al. A hormone-DNA repair circuit governs the response to genotoxic insult[J]. Cancer Discov, 2013, 3(11): 1254-1271. doi: 10.1158/2159-8290.CD-13-0108

    [43]

    Wu C, Wyatt AW, McPherson A, et al. Poly-gene fusion transcripts and chromothripsis in prostate cancer[J]. Genes Chromosomes Cancer, 2012, 51(12): 1144-1153. doi: 10.1002/gcc.21999

    [44]

    Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748): 644-648. doi: 10.1126/science.1117679

    [45]

    Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer[J]. Cancer Treat Rev, 2016, 45: 129-138. doi: 10.1016/j.ctrv.2016.03.002

    [46]

    Sharma A, Yeow WS, Ertel A, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression[J]. J Clin Invest, 2010, 120(12): 4478-4492. doi: 10.1172/JCI44239

    [47]

    Antony L, van der Schoor F, Dalrymple SL, et al. Androgen receptor(AR)suppresses normal human prostate epithelial cell proliferation via AR/β-catenin/TCF-4 complex inhibition of c-MYC transcription[J]. Prostate, 2014, 74(11): 1118-1131. doi: 10.1002/pros.22828

    [48]

    Tsou P, Katayama H, Ostrin EJ, et al. The Emerging Role of B Cells in Tumor Immunity[J]. Cancer Res, 2016, 76(19): 5597-5601. doi: 10.1158/0008-5472.CAN-16-0431

    [49]

    Carosella ED, Ploussard G, LeMaoult J, et al. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]. Eur Urol, 2015, 68(2): 267-279. doi: 10.1016/j.eururo.2015.02.032

    [50]

    Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory Pathways in Immunotherapy for Cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. doi: 10.1146/annurev-immunol-032414-112049

    [51]

    Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. Lancet Oncol, 2017, 18(8): 1009-1021. doi: 10.1016/S1470-2045(17)30516-8

    [52]

    Schweizer MT, Antonarakis ES. Prognostic and therapeutic implications of DNA repair gene mutations in advanced prostate cancer[J]. Clin Adv Hematol Oncol, 2017, 15(10): 785-795.

    [53]

    Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. doi: 10.1158/2159-8290.CD-15-0283

    [54]

    Drake CG, Doody AD, Mihalyo MA, et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen[J]. Cancer Cell, 2005, 7(3): 239-249. doi: 10.1016/j.ccr.2005.01.027

    [55]

    Ardiani A, Gameiro SR, Kwilas AR, et al. Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway[J]. Oncotarget, 2014, 5(19): 9335-9348. doi: 10.18632/oncotarget.2429

    [56]

    Bishop JL, Sio A, Angeles A, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer[J]. Oncotarget, 2015, 6(1): 234-242. doi: 10.18632/oncotarget.2703

    [57]

    Walker L, Millena AC, Strong N, et al. Expression of TGFβ3 and its effects on migratory and invasive behavior of prostate cancer cells: involvement of PI3-kinase/AKT signaling pathway[J]. Clin Exp Metastasis, 2013, 30(1): 13-23. doi: 10.1007/s10585-012-9494-0

    [58]

    Song B, Park SH, Zhao JC, et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression[J]. J Clin Invest, 2019, 129(2): 569-582.

    [59]

    Cai Q, Chen Y, Zhang D, et al. Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway[J]. Transl Androl Urol, 2020, 9(3): 1013-1027. doi: 10.21037/tau.2020.03.02

  • 加载中
计量
  • 文章访问数:  2405
  • PDF下载数:  9098
  • 施引文献:  0
出版历程
收稿日期:  2021-06-21
刊出日期:  2022-04-06

目录