Interactions between androgen receptor and other molecular pathways in prostate cancer
-
摘要: 前列腺癌(PCa)的发病率逐年上升,雄激素受体(AR)被认为是PCa生长和进展的主要因素,雄激素剥夺治疗(ADT)是激素敏感性前列腺癌治疗的基石,但大多数患者最终会发展成为去势抵抗性前列腺癌(CRPC)。近年来不断有研究发现在PCa中存在多种信号通路,协同AR通路促进PCa发生和进展,如PTEN/PI3K/AKT/mTOR通路、WNT通路、神经内分泌模式、DNA修复途径、TMPRSS2 / ETS融合、细胞周期途径、免疫系统异常、TGF-β通路。在此综述中,我们讨论了在PCa中AR信号与其他信号通路之间的相互作用。Abstract: The incidence of prostate cancer (PCa) is rising year by year, and the androgen receptor (AR) is thought to be the main factor in the growth and progress of the disease. Androgen deprivation therapy (ADT) is the foundation of the treatment of hormone-sensitive prostate cancer, but most patients eventually develop into castration-resistant prostate cancer(CRPC). In recent years, there have been various signaling pathways to promote the occurrence and progress of prostate cancer, such as the PTEN/PI3K/AKT/mTOR pathway, WNT pathway, the neuroendocrine model, TMPRSS2 / ETS fusion, the cellular cycle pathway, abnormal immune system and TGF-β pathway. In this review, we discussed the interaction between AR pathway and other signaling pathways in prostate cancer.
-
Key words:
- prostate cancer /
- castration resistant prostate cancer /
- androgen receptor /
- PI3K /
- WNT
-
-
[1] Freddie B, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer J Clini, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
[2] Davey RA, Grossmann M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside[J]. Clin Biochem Rev, 2016, 37(1): 3-15.
[3] Leung JK, Sadar MD. Non-Genomic Actions of the Androgen Receptor in Prostate Cancer[J]. Front Endocrinol(Lausanne), 2017, 8: 2.
[4] Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance[J]. Cell Signal, 2016, 28(5): 348-356. doi: 10.1016/j.cellsig.2016.01.013
[5] Kim HJ, Lee WJ. Insulin-like growth factor-Ⅰ induces androgen receptor activation in differentiating C2C12 skeletal muscle cells[J]. Mol Cells, 2009, 28(3): 189-194. doi: 10.1007/s10059-009-0118-8
[6] Culig Z, Klocker H, Bartsch G, et al. Androgen receptors in prostate cancer[J]. J Urol, 2003, 170(4 Pt 1): 1363-1369.
[7] Tu JJ, Rohan S, Kao J, et al. Gene fusions between TMPRSS2 and ETS family genes in prostate cancer: frequency and transcript variant analysis by RT-PCR and FISH on paraffin-embedded tissues[J]. Mod Pathol, 2007, 20(9): 921-928. doi: 10.1038/modpathol.3800903
[8] Massie CE, Lynch A, Ramos-Montoya A, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis[J]. EMBO J, 2011, 30(13): 2719-2733. doi: 10.1038/emboj.2011.158
[9] Baca SC, Prandi D, Lawrence MS, et al. Punctuated evolution of prostate cancer genomes[J]. Cell, 2013, 153(3): 666-677. doi: 10.1016/j.cell.2013.03.021
[10] Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001
[11] Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer[J]. Cancer Cell, 2011, 19(5): 575-586. doi: 10.1016/j.ccr.2011.04.008
[12] Mulholland DJ, Tran LM, Li Y, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth[J]. Cancer Cell, 2011, 19(6): 792-804. doi: 10.1016/j.ccr.2011.05.006
[13] Murillo-Garzón V, Kypta R. WNT signalling in prostate cancer[J]. Nat Rev Urol, 2017, 14(11): 683-696. doi: 10.1038/nrurol.2017.144
[14] Beltran H, Yelensky R, Frampton GM, et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity[J]. Eur Urol, 2013, 63(5): 920-926. doi: 10.1016/j.eururo.2012.08.053
[15] Zong Y, Huang J, Sankarasharma D, et al. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling[J]. Proc Natl Acad Sci USA, 2012, 109(50): E3395-3404.
[16] Dakhova O, Rowley D, Ittmann M. Genes upregulated in prostate cancer reactive stroma promote prostate cancer progression in vivo[J]. Clin Cancer Res, 2014, 20(1): 100-109. doi: 10.1158/1078-0432.CCR-13-1184
[17] Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B[J]. Nat Med, 2012, 18(9): 1359-1368. doi: 10.1038/nm.2890
[18] Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics[J]. Cell Res, 2009, 19(6): 683-697. doi: 10.1038/cr.2009.43
[19] Lee E, Ha S, Logan SK. Divergent Androgen Receptor and Beta-Catenin Signaling in Prostate Cancer Cells[J]. PLoS One, 2015, 10(10): e0141589. doi: 10.1371/journal.pone.0141589
[20] Ayala GE, Dai H, Powell M, et al. Cancer-related axonogenesis and neurogenesis in prostate cancer[J]. Clin Cancer Res, 2008, 14(23): 7593-7603. doi: 10.1158/1078-0432.CCR-08-1164
[21] Zahalka AH, Arnal-Estapé A, Maryanovich M, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer[J]. Science, 2017, 358(6361): 321-326. doi: 10.1126/science.aah5072
[22] Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression[J]. Science, 2013, 341(6142): 1236361. doi: 10.1126/science.1236361
[23] Coarfa C, Florentin D, Putluri N, et al. Influence of the neural microenvironment on prostate cancer[J]. Prostate, 2018, 78(2): 128-139. doi: 10.1002/pros.23454
[24] Rutledge A, Jobling P, Walker MM, et al. Spinal Cord Injuries and Nerve Dependence in Prostate Cancer[J]. Trends Cancer, 2017, 3(12): 812-815. doi: 10.1016/j.trecan.2017.10.001
[25] Lu H, Liu X, Guo F, et al. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16, 825 patients[J]. Onco Targets Ther, 2015, 8: 985-990.
[26] Reeves FA, Battye S, Roth H, et al. Prostatic nerve subtypes independently predict biochemical recurrence in prostate cancer[J]. J Clin Neurosci, 2019, 63: 213-219. doi: 10.1016/j.jocn.2019.01.052
[27] March B, Faulkner S, Jobling P, et al. Tumour innervation and neurosignalling in prostate cancer[J]. Nat Rev Urol, 2020, 17(2): 119-130. doi: 10.1038/s41585-019-0274-3
[28] Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045
[29] Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer[J]. Cancer Discov, 2017, 7(7): 736-749. doi: 10.1158/2159-8290.CD-16-1174
[30] Aparicio A, Logothetis CJ, Maity SN. Understanding the lethal variant of prostate cancer: power of examining extremes[J]. Cancer Discov, 2011, 1(6): 466-468. doi: 10.1158/2159-8290.CD-11-0259
[31] Mu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. doi: 10.1126/science.aah4307
[32] Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. doi: 10.1126/science.aah4199
[33] Dardenne E, Beltran H, Benelli M, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer[J]. Cancer Cell, 2016, 30(4): 563-577. doi: 10.1016/j.ccell.2016.09.005
[34] Lee JK, Phillips JW, Smith BA, et al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells[J]. Cancer Cell, 2016, 29(4): 536-547. doi: 10.1016/j.ccell.2016.03.001
[35] Dardenne E, Beltran H, Benelli M, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer[J]. Cancer Cell, 2016, 30(4): 563-577. doi: 10.1016/j.ccell.2016.09.005
[36] Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045
[37] Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets[J]. Cancer Discov, 2011, 1(6): 487-495. doi: 10.1158/2159-8290.CD-11-0130
[38] Rapa I, Volante M, Migliore C, et al. Human ASH-1 promotes neuroendocrine differentiation in androgen deprivation conditions and interferes with androgen responsiveness in prostate cancer cells[J]. Prostate, 2013, 73(11): 1241-1249. doi: 10.1002/pros.22679
[39] McKeithen D, Graham T, Chung LW, et al. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells[J]. Prostate, 2010, 70(9): 982-992. doi: 10.1002/pros.21132
[40] Mateo J, Carreira S, Sandhu S, et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer[J]. N Engl J Med, 2015, 373(18): 1697-1708. doi: 10.1056/NEJMoa1506859
[41] Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001
[42] Goodwin JF, Schiewer MJ, Dean JL, et al. A hormone-DNA repair circuit governs the response to genotoxic insult[J]. Cancer Discov, 2013, 3(11): 1254-1271. doi: 10.1158/2159-8290.CD-13-0108
[43] Wu C, Wyatt AW, McPherson A, et al. Poly-gene fusion transcripts and chromothripsis in prostate cancer[J]. Genes Chromosomes Cancer, 2012, 51(12): 1144-1153. doi: 10.1002/gcc.21999
[44] Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748): 644-648. doi: 10.1126/science.1117679
[45] Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer[J]. Cancer Treat Rev, 2016, 45: 129-138. doi: 10.1016/j.ctrv.2016.03.002
[46] Sharma A, Yeow WS, Ertel A, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression[J]. J Clin Invest, 2010, 120(12): 4478-4492. doi: 10.1172/JCI44239
[47] Antony L, van der Schoor F, Dalrymple SL, et al. Androgen receptor(AR)suppresses normal human prostate epithelial cell proliferation via AR/β-catenin/TCF-4 complex inhibition of c-MYC transcription[J]. Prostate, 2014, 74(11): 1118-1131. doi: 10.1002/pros.22828
[48] Tsou P, Katayama H, Ostrin EJ, et al. The Emerging Role of B Cells in Tumor Immunity[J]. Cancer Res, 2016, 76(19): 5597-5601. doi: 10.1158/0008-5472.CAN-16-0431
[49] Carosella ED, Ploussard G, LeMaoult J, et al. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G[J]. Eur Urol, 2015, 68(2): 267-279. doi: 10.1016/j.eururo.2015.02.032
[50] Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory Pathways in Immunotherapy for Cancer[J]. Annu Rev Immunol, 2016, 34: 539-573. doi: 10.1146/annurev-immunol-032414-112049
[51] Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. Lancet Oncol, 2017, 18(8): 1009-1021. doi: 10.1016/S1470-2045(17)30516-8
[52] Schweizer MT, Antonarakis ES. Prognostic and therapeutic implications of DNA repair gene mutations in advanced prostate cancer[J]. Clin Adv Hematol Oncol, 2017, 15(10): 785-795.
[53] Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. doi: 10.1158/2159-8290.CD-15-0283
[54] Drake CG, Doody AD, Mihalyo MA, et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen[J]. Cancer Cell, 2005, 7(3): 239-249. doi: 10.1016/j.ccr.2005.01.027
[55] Ardiani A, Gameiro SR, Kwilas AR, et al. Androgen deprivation therapy sensitizes prostate cancer cells to T-cell killing through androgen receptor dependent modulation of the apoptotic pathway[J]. Oncotarget, 2014, 5(19): 9335-9348. doi: 10.18632/oncotarget.2429
[56] Bishop JL, Sio A, Angeles A, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer[J]. Oncotarget, 2015, 6(1): 234-242. doi: 10.18632/oncotarget.2703
[57] Walker L, Millena AC, Strong N, et al. Expression of TGFβ3 and its effects on migratory and invasive behavior of prostate cancer cells: involvement of PI3-kinase/AKT signaling pathway[J]. Clin Exp Metastasis, 2013, 30(1): 13-23. doi: 10.1007/s10585-012-9494-0
[58] Song B, Park SH, Zhao JC, et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression[J]. J Clin Invest, 2019, 129(2): 569-582.
[59] Cai Q, Chen Y, Zhang D, et al. Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway[J]. Transl Androl Urol, 2020, 9(3): 1013-1027. doi: 10.21037/tau.2020.03.02
-
计量
- 文章访问数: 2405
- PDF下载数: 9098
- 施引文献: 0