Research progress of tumor-associated fibroblasts in the genesis and development of bladder cancer
-
摘要: 肿瘤相关成纤维细胞作为肿瘤微环境中主要的间质细胞,可以通过改造肿瘤微环境,影响肿瘤的发生发展。膀胱癌是泌尿系统最常见的恶性肿瘤之一,具有易复发、易进展的特点。尽管接受了多种治疗措施,膀胱癌患者的预后仍差。近年来的研究发现,肿瘤相关成纤维细胞在膀胱癌的发生发展中起重要作用,并且与膀胱癌多种耐药机制相关。因此,本文归纳了近年来肿瘤相关成纤维细胞在膀胱癌的研究进展,总结了肿瘤相关成纤维细胞在膀胱癌发生发展中的作用,以及利用肿瘤相关成纤维细胞改进膀胱癌治疗的潜在可能,期望进一步推动膀胱癌肿瘤微环境的研究。Abstract: Cancer-associated fibroblasts, as the main stromal cells in the tumor microenvironment, can affect the genesis and development of tumors by modifying the tumor microenvironment. Bladder cancer is one of the most common malignant tumors in the urinary system, with high rate of recurrence and progression. Despite various therapeutic measures, the prognosis of patients with bladder cancer remains poor. Recent studies have found that cancer-associated fibroblasts play an important role in the genesis and development of bladder cancer, and are related to a variety of drug resistance mechanisms of bladder cancer. Therefore, this article summarizes the research progress of cancer-associated fibroblasts in bladder cancer in recent years, summarizes the role of cancer-associated fibroblasts in the occurrence and development of bladder cancer, and the potential of targeting cancer-associated fibroblasts to improve the treatment of bladder cancer, hoping to further promote the study of bladder cancer tumor microenvironment.
-
Key words:
- bladder cancer /
- cancer-associated fibroblasts /
- tumor microenvironment
-
-
[1] Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002
[2] Lenis AT, Lec PM, Chamie K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. doi: 10.1001/jama.2020.17598
[3] Du YH, Sui YQ, Cao J, et al. Dynamic changes in myofibroblasts affect the carcinogenesis and prognosis of bladder cancer associated with tumor microenvironment remodeling[J]. Front Cell Dev Biol, 2022, 10: 833578. doi: 10.3389/fcell.2022.833578
[4] Wu JT, Yu CC, Cai L, et al. Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts[J]. Oncotarget, 2017, 8(31): 50692-50703. doi: 10.18632/oncotarget.17021
[5] Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy[J]. Genes Dev, 2016, 30(9): 1002-1019. doi: 10.1101/gad.279737.116
[6] Ma ZK, Li XD, Mao YZ, et al. Interferon-dependent SLC14A1+cancer-associated fibroblasts promote cancer stemness via WNT5A in bladder cancer[J]. Cancer Cell, 2022, 40(12): 1550-1565. e7. doi: 10.1016/j.ccell.2022.11.005
[7] Long XB, Xiong W, Zeng XT, et al. Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ERβ/Bcl-2 signalling[J]. Cell Death Dis, 2019, 10(5): 375. doi: 10.1038/s41419-019-1581-6
[8] Kalluri R, Zeisberg M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5): 392-401. doi: 10.1038/nrc1877
[9] Miyake M, Hori S, Morizawa Y, et al. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer[J]. Neoplasia, 2016, 18(10): 636-646. doi: 10.1016/j.neo.2016.08.002
[10] Du YH, Cao J, Jiang X, et al. Comprehensive analysis of CXCL12 expression reveals the significance of inflammatory fibroblasts in bladder cancer carcinogenesis and progression[J]. Cancer Cell Int, 2021, 21(1): 613. doi: 10.1186/s12935-021-02314-y
[11] Liu BT, Pan S, Liu JL, et al. Cancer-associated fibroblasts and the related Runt-related transcription factor 2(RUNX2) promote bladder cancer progression[J]. Gene, 2021, 775: 145451. doi: 10.1016/j.gene.2021.145451
[12] Zhang Z, Liang ZJ, Li D, et al. Development of a CAFs-related gene signature to predict survival and drug response in bladder cancer[J]. Hum Cell, 2022, 35(2): 649-664. doi: 10.1007/s13577-022-00673-w
[13] Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics[J]. Nat Cell Biol, 2018, 20(7): 766-774. doi: 10.1038/s41556-018-0131-2
[14] Millet M, Bollmann E, Ringuette Goulet C, et al. Cancer-associated fibroblasts in a 3D engineered tissue model induce tumor-like matrix stiffening and EMT transition[J]. Cancers, 2022, 14(15): 3810. doi: 10.3390/cancers14153810
[15] Dong DH, Yao Y, Song JL, et al. Cancer-associated fibroblasts regulate bladder cancer invasion and metabolic phenotypes through autophagy[J]. Dis Markers, 2021, 2021: 6645220.
[16] Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment[J]. Front Immunol, 2019, 10: 1835. doi: 10.3389/fimmu.2019.01835
[17] Said N, Frierson HF, Sanchez-Carbayo M, et al. Loss of SPARC in bladder cancer enhances carcinogenesis and progression[J]. J Clin Invest, 2013, 123(2): 751-766.
[18] Rhim AD, Oberstein PE, Thomas DH, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2014, 25(6): 735-747. doi: 10.1016/j.ccr.2014.04.021
[19] Nedjadi T, Salem N, Khayyat D, et al. Sonic hedgehog expression is associated with lymph node invasion in urothelial bladder cancer[J]. Pathol Oncol Res, 2019, 25(3): 1067-1073. doi: 10.1007/s12253-018-0477-6
[20] Kitagawa K, Shigemura K, Sung SY, et al. Possible correlation of sonic hedgehog signaling with epithelial-mesenchymal transition in muscle-invasive bladder cancer progression[J]. J Cancer Res Clin Oncol, 2019, 145(9): 2261-2271. doi: 10.1007/s00432-019-02987-z
[21] Nurmik M, Ullmann P, Rodriguez F, et al. In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4): 895-905. doi: 10.1002/ijc.32193
[22] Su SC, Chen JN, Yao HR, et al. CD10+GPR77+cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness[J]. Cell, 2018, 172(4): 841-856. e16. doi: 10.1016/j.cell.2018.01.009
[23] Mezheyeuski A, Segersten U, Leiss LW, et al. Fibroblasts in urothelial bladder cancer define stroma phenotypes that are associated with clinical outcome[J]. Sci Rep, 2020, 10(1): 281. doi: 10.1038/s41598-019-55013-0
[24] Shan G, Zhou XK, Gu J, et al. Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN[J]. Cell Oncol(Dordr), 2021, 44(1): 45-59. doi: 10.1007/s13402-020-00500-0
[25] Muilwijk T, Akand M, Daelemans S, et al. Stromal marker fibroblast activation protein drives outcome in T1 non-muscle invasive bladder cancer[J]. PLoS One, 2021, 16(9): e0257195.
[26] Hemida AS, Aiad HAES, Hassan NA, et al. Fibroblast activation protein(FAP)expression in CK5/6 expressed(Basal subtype)& CK20 expressed(Luminal subtype)urothelial bladder carcinoma: an immunohistochemical study[J]. J Immunoassay Immunochem, 2022, 43(6): 618-633. doi: 10.1080/15321819.2022.2095208
[27] Calvete J, Larrinaga G, Errarte P, et al. The coexpression of fibroblast activation protein(FAP)and basal-type markers(CK 5/6 and CD44) predicts prognosis in high-grade invasive urothelial carcinoma of the bladder[J]. Hum Pathol, 2019, 91: 61-68. doi: 10.1016/j.humpath.2019.07.002
[28] Alnuaimi AR, Nair VA, Malhab LJB, et al. Emerging role of caldesmon in cancer: a potential biomarker for colorectal cancer and other cancers[J]. World J Gastrointest Oncol, 2022, 14(9): 1637-1653. doi: 10.4251/wjgo.v14.i9.1637
[29] Zhou Z, Cui D, Sun MH, et al. CAFs-derived MFAP5 promotes bladder cancer malignant behavior through NOTCH2/HEY1 signaling[J]. FASEB J, 2020, 34(6): 7970-7988.
[30] Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
[31] Sundararajan V, Sarkar FH, Ramasamy TS. The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications[corrected][J]. Cell Oncol(Dordr), 2018, 41(3): 223-252.
[32] Zhang YY, Luo GY, You SN, et al. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell proliferation and invasion by regulating miR-15a-5p/HMGA2 axis[J]. Acta Biochim Biophys Sin, 2021, 53(6): 673-682. doi: 10.1093/abbs/gmab041
[33] Yan L, Wang PY, Fang WH, et al. Cancer-associated fibroblasts-derived exosomes-mediated transfer of LINC00355 regulates bladder cancer cell proliferation and invasion[J]. Cell Biochem Funct, 2020, 38(3): 257-265. doi: 10.1002/cbf.3462
[34] Luo GY, Zhang YY, Wu ZH, et al. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis[J]. Acta Biochim Biophys Sin, 2021, 53(5): 558-566.
[35] Lu XM, Wang JF, Dong BB, et al. Exosomal miR-93-5p from cancer-associated fibroblasts confers malignant phenotypes on bladder cancer cells by targeting PAFAH1B1[J]. Anticancer Drugs, 2023, 34(3): 439-450.
[36] Ringuette Goulet C, Bernard G, Tremblay S, et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling[J]. Mol Cancer Res, 2018, 16(7): 1196-1204.
[37] Yu ZH, Lu B, Gao H, et al. A new prognostic signature constructed with necroptosis-related lncRNA in bladder cancer[J]. J Oncol, 2022, 2022: 5643496.
[38] Yang F, Guo ZF, He C, et al. Cancer-associated fibroblasts promote cell proliferation and invasion via paracrine Wnt/IL1β signaling pathway in human bladder cancer[J]. Neoplasma, 2021, 68(1): 79-86.
[39] Miao L, Wang YH, Lin CM, et al. Nanoparticle modulation of the tumor microenvironment enhances therapeutic efficacy of cisplatin[J]. J Control Release, 2015, 217: 27-41.
[40] Wang L, Saci A, Szabo PM, et al. EMT-and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer[J]. Nat Commun, 2018, 9(1): 3503.
[41] Burley A, Rullan A, Wilkins A. A review of the biology and therapeutic implications of cancer-associated fibroblasts(CAFs)in muscle-invasive bladder cancer[J]. Front Oncol, 2022, 12: 1000888.
[42] Yoshida T, Ohe C, Ito K, et al. Clinical and molecular correlates of response to immune checkpoint blockade in urothelial carcinoma with liver metastasis[J]. Cancer Immunol Immunother, 2022, 71(11): 2815-2828.
[43] Abd El-Azeem MA, Ali MA, El-Shorbagy SH. Expression of GLUT4 and FAP in urothelial bladder carcinoma: correlation with angiogenesis and clinicopathological characteristics[J]. J Egypt Natl Canc Inst, 2022, 34(1): 40.
[44] Goulet CR, Champagne A, Bernard G, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling[J]. BMC Cancer, 2019, 19(1): 137.
[45] Janisch F, Rink M, Shariat SF. The promise and challenges of neoadjuvant immunotherapy in the management of non-metastatic muscle-invasive bladder cancer[J]. BJU Int, 2020, 125(6): 753-755.
[46] Du YH, Jiang X, Wang B, et al. The cancer-associated fibroblasts related geneCALD1is a prognostic biomarker and correlated with immune infiltration in bladder cancer[J]. Cancer Cell Int, 2021, 21(1): 283.
[47] Chen HL, Chen G. Dissecting immunosuppressive cell communication patterns reveals JunB proto-oncogene(JUNB)shaping a non-inflamed tumor microenvironment[J]. Front Genet, 2022, 13: 883583.
[48] Li P, Cao JL, Li JP, et al. Identification of prognostic biomarkers associated with stromal cell infiltration in muscle-invasive bladder cancer by bioinformatics analyses[J]. Cancer Med, 2020, 9(19): 7253-7267.
[49] Dominguez-Gutierrez PR, Kwenda EP, Donelan W, et al. Detection of PD-L1-expressing myeloid cell clusters in the hyaluronan-enriched stroma in tumor tissue and tumor-draining lymph nodes[J]. J Immunol, 2022, 208(12): 2829-2836.
[50] Du YH, Miao WH, Jiang X, et al. The epithelial to mesenchymal transition related gene calumenin is an adverse prognostic factor of bladder cancer correlated with tumor microenvironment remodeling, gene mutation, and ferroptosis[J]. Front Oncol, 2021, 11: 683951.
[51] Windisch P, Zwahlen DR, Koerber SA, et al. Clinical results of fibroblast activation protein(FAP)specific PET and implications for radiotherapy planning: systematic review[J]. Cancers, 2020, 12(9): 2629.
[52] Miao L, Liu Q, Lin CM, et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors[J]. Cancer Res, 2017, 77(3): 719-731.
-
计量
- 文章访问数: 1699
- PDF下载数: 1271
- 施引文献: 0