机器人自主手术研究现状及展望

张旭, 马鑫, 贾通宇, 等. 机器人自主手术研究现状及展望[J]. 临床泌尿外科杂志, 2025, 40(1): 1-5. doi: 10.13201/j.issn.1001-1420.2025.01.001
引用本文: 张旭, 马鑫, 贾通宇, 等. 机器人自主手术研究现状及展望[J]. 临床泌尿外科杂志, 2025, 40(1): 1-5. doi: 10.13201/j.issn.1001-1420.2025.01.001
ZHANG Xu, MA Xin, JIA Tongyu, et al. Autonomous robotic surgery: research status and future prospect[J]. J Clin Urol, 2025, 40(1): 1-5. doi: 10.13201/j.issn.1001-1420.2025.01.001
Citation: ZHANG Xu, MA Xin, JIA Tongyu, et al. Autonomous robotic surgery: research status and future prospect[J]. J Clin Urol, 2025, 40(1): 1-5. doi: 10.13201/j.issn.1001-1420.2025.01.001

机器人自主手术研究现状及展望

  • 基金项目:
    国家重点研发计划2023年“智能机器人”专项重点项目(No: 2023YFB4706000)
详细信息
    作者简介:

    张旭,中国科学院院士,解放军总医院泌尿外科医学部专业技术少将主任、主任医师、教授,博士研究生导师。我国泌尿外科腹腔镜和机器人技术的奠基人,担任中国医学科学院学部委员、中华医学会泌尿外科学分会候任主任委员、北京医学会理事会常务理事兼副会长、北京市医学会泌尿外科分会主任委员。全军科技领军人才,全军战创伤重点实验室主任,国家杰出青年基金获得者,国家高技术研究发展计划及全军重大后勤科研项目首席专家,2006年及2013年荣获2项国家科学技术进步二等奖。中央保健委员会专家组成员,享受国务院特殊津贴。Bladder、《微创泌尿外科杂志》等学术期刊主编

    通讯作者: 张旭,E-mail:xzhang301@163.com
  • 中图分类号: R699.1

Autonomous robotic surgery: research status and future prospect

More Information
  • 机器人自主手术是未来外科学发展的重要方向,指机器人能够在不依赖外科医生的情况下自主完成手术操作。然而,当前机器人手术仍然依赖主从式遥操作,自主手术能力尚未实现。机器人自主手术有望缓解全球医疗资源紧张和不均衡的问题,实现优质医疗资源的“一对多”和广覆盖,并对大众健康产生深远影响。本文旨在讨论手术机器人的自主性分级,概述当前技术研究现状以及在伦理、法律和社会学层面的挑战,并对其未来的发展方向进行展望。
  • 加载中
  • [1]

    Dagnino G, Kundrat D. Robot-assistive minimally invasive surgery: trends and future directions[J]. Int J Intell Robot Appl, 2024, 8: 812-826. doi: 10.1007/s41315-024-00341-2

    [2]

    Intuitive Surgical Web Page. Accessed: Oct. 20, 2024[Online]. Available: https://www.intuitive.com/en-us

    [3]

    Yang HY, Seon JK. The landscape of surgical robotics in orthopedics surgery[J]. Biomed Eng Lett, 2023, 13(4): 537-542. doi: 10.1007/s13534-023-00321-8

    [4]

    Kazemzadeh K, Akhlaghdoust M, Zali A. Advances in artificial intelligence, robotics, augmented and virtual reality in neurosurgery[J]. Front Surg, 2023, 10: 1241923. doi: 10.3389/fsurg.2023.1241923

    [5]

    Thirunavukarasu AJ, Hu ML, Foster WP, et al. Robot-assisted eye surgery: a systematic review of effectiveness, safety, and practicality in clinical settings[J]. Transl Vis Sci Technol, 2024, 13(6): 20. doi: 10.1167/tvst.13.6.20

    [6]

    Chen PF, Wang YT, Tian DP, et al. The catheter and guidewire operating systems of vascular interventional surgical robots: a systematic review[J]. IEEE Trans Med Robot Bionics, 2023, 5(2): 180-195. doi: 10.1109/TMRB.2023.3272049

    [7]

    Rivero-Moreno Y, Echevarria S, Vidal-Valderrama C, et al. Robotic surgery: a comprehensive review of the literature and current trends[J]. Cureus, 2023, 15(7): e42370.

    [8]

    Catchpole K, Cohen T, Alfred M, et al. Human factors integration in robotic surgery[J]. Hum Factors, 2024, 66(3): 683-700. doi: 10.1177/00187208211068946

    [9]

    Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles(SAE International, 2021). Accessed: Oct. 20, 2024[Online]. Available: https://www.sae.org/standards/content/j3016_202104/.

    [10]

    Yang GZ, Cambias J, Cleary K, et al. Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy[J]. Sci Robot, 2017, 2(4): eaam8638. doi: 10.1126/scirobotics.aam8638

    [11]

    Lee A, Baker TS, Bederson JB, et al. Levels of autonomy in FDA-cleared surgical robots: a systematic review[J]. NPJ Digit Med, 2024, 7(1): 103. doi: 10.1038/s41746-024-01102-y

    [12]

    Yu D, Nasir M, Pitts BJ, et al. L3 vehicles are becoming a reality: important human factors consideration for the viability of conditional automation[J]. Proc Hum Factors Ergon Soc Annu Meet, 2023, 67(1): 1285-1288. doi: 10.1177/21695067231192644

    [13]

    Klingberg L. The future of Remote Operations for Autonomous Vehicles: Exploring Human-Automation Teamwork and Situational Awareness for SAE Level 4 trucks. 2023.

    [14]

    Attanasio A, Scaglioni B, De Momi E, et al. Autonomy in surgical robotics[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4(1): 651-679. doi: 10.1146/annurev-control-062420-090543

    [15]

    Zorn KC, Elterman D, Gonzalez R, et al. Aquablation treatment for benign prostate hyperplasia: current standardized procedure[J]. J Endourol, 2022, 36(S2): S1-S5. doi: 10.1089/end.2022.0439

    [16]

    Reddy K, Gharde P, Tayade H, et al. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers[J]. Cureus, 2023, 15(12): e50415.

    [17]

    Gu L, Yin C, Jia T, et al. Robotic surgery in China[J]. Innovation(Camb), 2023, 4(5): 100499.

    [18]

    Sirintuna D, Kastritsi T, Ozdamar I, et al. Enhancing human-robot collaborative transportation through obstacle-aware vibrotactile warning and virtual fixtures[J]. Robot Auton Syst, 2024, 178: 104725. doi: 10.1016/j.robot.2024.104725

    [19]

    Bergholz M, Ferle M, Weber BM. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis[J]. Sci Rep, 2023, 13(1): 19215. doi: 10.1038/s41598-023-46641-8

    [20]

    Cheng M, Li RM, Ding RQ, et al. Dynamic guidance virtual fixture for hydraulic manipulator via learning from demonstration[J]. Proc Inst Mech Eng Part C J Mech Eng Sci, 2023, 237(4): 952-962. doi: 10.1177/09544062221124019

    [21]

    Ma RZ, Ramaswamy A, Xu JS, et al. Surgical gestures as a method to quantify surgical performance and predict patient outcomes[J]. NPJ Digit Med, 2022, 5(1): 187. doi: 10.1038/s41746-022-00738-y

    [22]

    van Amsterdam B, Clarkson MJ, Stoyanov D. Gesture recognition in robotic surgery: a review[J]. IEEE Trans Biomed Eng, 2021, 68(6): 2021-2035. doi: 10.1109/TBME.2021.3054828

    [23]

    Leonard S, Wu KL, Kim Y, et al. Smart tissue anastomosis robot(STAR): a vision-guided robotics system for laparoscopic suturing[J]. IEEE Trans Biomed Eng, 2014, 61(4): 1305-1317. doi: 10.1109/TBME.2014.2302385

    [24]

    Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery[J]. Sci Transl Med, 2016, 8(337): 337ra64.

    [25]

    Schmidgall S, Krieger A, Eshraghian J. Surgical Gym: a high-performance GPU-based platform for reinforcement learning with surgical robots[C]//2024 IEEE International Conference on Robotics and Automation(ICRA). May 13-17, 2024, Yokohama, Japan. IEEE, 2024: 13354-13361.

    [26]

    Chan J, Auld TS, Long WJ, et al. Active robotic total knee arthroplasty(TKA): initial experience with the TSolution one TKA system[J]. Surg Technol Int, 2020, 37: 299-305.

    [27]

    Zhang RY, Chen JH, Wang ZY, et al. A step towards conditional autonomy-robotic appendectomy[J]. IEEE Robot Autom Lett, 2023, 8(5): 2429-2436. doi: 10.1109/LRA.2023.3254859

    [28]

    Saeidi H, Opfermann JD, Kam M, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis[J]. Sci Robot, 2022, 7(62): eabj2908. doi: 10.1126/scirobotics.abj2908

    [29]

    Petoukhova A, Snijder R, Wiggenraad R, et al. Quality of automated stereotactic radiosurgery plans in patients with 4 to 10 brain metastases[J]. Cancers, 2021, 13(14): 3458. doi: 10.3390/cancers13143458

    [30]

    Marahrens N, Jones D, Murasovs N, et al. An ultrasound-guided system for autonomous marking of tumor boundaries during robot-assisted surgery[J]. IEEE Trans Med Robot Bionics, 2024, 6(4): 1699-1712. doi: 10.1109/TMRB.2024.3468397

    [31]

    Ge JW, Kam M, Opfermann JD, et al. Autonomous system for tumor resection(ASTR)-dual-arm robotic midline partial glossectomy[J]. IEEE Robot Autom Lett, 2024, 9(2): 1166-1173. doi: 10.1109/LRA.2023.3341773

    [32]

    Yanamala AKY, Suryadevara S, Kalli VDR. Balancing Innovation and Privacy: The Intersection of Data Protection and Artificial Intelligence[J]. International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence, 2024, 15(1): 1-43.

    [33]

    Saeidnia HR. Ethical artificial intelligence(AI): confronting bias and discrimination in the library and information industry[J]. Libr Hi Tech News, 2023, Vol. ahead-of-print No. ahead-of-print.

    [34]

    Bearman M, Ajjawi R. Learning to work with the black box: pedagogy for a world with artificial intelligence[J]. Brit J Educational Tech, 2023, 54(5): 1160-1173. doi: 10.1111/bjet.13337

    [35]

    Lile DJ. FDA overview[M]. Translational Surgery. Amsterdam, Netherlands: Elsevier. 2023: 501-507.

    [36]

    Fosch-Villaronga E, Khanna P, Drukarch H, et al. The role of humans in surgery automation[J]. Int J Soc Robot, 2023, 15(3): 563-580. doi: 10.1007/s12369-022-00875-0

    [37]

    Schmidgall S, Kim JW, Krieger A. Robots learning to imitate surgeons-challenges and possibilities[J]. Nat Rev Urol, 2024, 21: 451-452. doi: 10.1038/s41585-024-00873-z

    [38]

    Kim JW, Zhao T Z, Schmidgall S, et al. Surgical Robot Transformer(SRT): Imitation Learning for Surgical Subtasks[C]. 8th Annual Conference on Robot Learning. Singapore, 2022.

    [39]

    Battaglia E, Boehm J, Zheng Y, et al. Rethinking autonomous surgery: focusing on enhancement over autonomy[J]. Eur Urol Focus, 2021, 7(4): 696-705. doi: 10.1016/j.euf.2021.06.009

    [40]

    Rivero-Moreno Y, Rodriguez M, Losada-Muñoz P, et al. Autonomous robotic surgery: has the future arrived?[J]. Cureus, 2024, 16(1): e52243.

  • 加载中
计量
  • 文章访问数:  1046
  • PDF下载数:  135
  • 施引文献:  0
出版历程
收稿日期:  2024-10-26
刊出日期:  2025-01-06

目录