Research progress on molecular mechanism of lineage plasticity in neuroendocrine prostate cancer
-
摘要: 前列腺癌是一种激素驱动的疾病,其发生发展高度依赖于雄激素受体信号通路的活化,因而雄激素剥夺疗法成为晚期前列腺癌的治疗基石。雄激素剥夺疗法在治疗初期一般疗效良好,但随着治疗时间延长,部分患者进展为侵袭性极强的神经内分泌性前列腺癌,其诊断后的中位生存期不足1年。神经内分泌前列腺癌通常表现出雄激素受体的缺失、细胞干性增加以及神经内分泌标记物如嗜铬粒蛋白A、突触素和CD56的表达增加。神经内分泌前列腺癌目前尚未有特定的的治疗策略,主要应用具有相似神经内分泌表型的小细胞肺癌的铂类治疗方案,然而,铂类治疗并未在神经内分泌前列腺癌上取得满意的效果。本综述回顾了在神经内分泌前列腺癌中谱系可塑性发生的分子机制,包括基因突变、转录网络调控、表观遗传修饰改变等,为其潜在治疗策略提供见解。Abstract: Prostate cancer is a hormone-driven disease, and its development is highly dependent on the increase of androgen receptor signaling pathway. Therefore, androgen deprivation therapy has become the standard treatment for advanced prostate cancer. With the long-term application of androgen deprivation therapy, some adenocarcinoma transforms to highly invasive neuroendocrine prostate cancer, of that the median survival time after diagnosis is less than one year. Neuroendocrine prostate cancer usually shows loss of androgen receptors and increases expression of stemness markers and neuroendocrine markers such as chromogranin A, synaptophysin and CD56. At present, there is no specific treatment for neuroendocrine prostate cancer. The therapies which are largely based on the treatment of small cell lung cancer with the similar neuroendocrine phenotype, unfortunately, have not achieved satisfactory results in neuroendocrine prostate cancer. Here we review the molecular mechanisms of lineage plasticity in neuroendocrine prostate cancer, including gene mutation, transcriptional network regulation, epigenetic modification changes, etc., and provide insights into the potential treatment strategies for neuroendocrine prostate cancer.
-
Key words:
- neuroendocrine prostate cancer /
- lineage plasticity /
- molecular mechanism
-
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] Sandhu S, Moore CM, Chiong E, et al. Prostate cancer[J]. Lancet, 2021, 398(10305): 1075-1090. doi: 10.1016/S0140-6736(21)00950-8
[3] Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer[J]. Clin Cancer Res, 2006, 12(6): 1665-1671. doi: 10.1158/1078-0432.CCR-06-0067
[4] Davies A, Conteduca V, Zoubeidi A, et al. Biological evolution of castration-resistant prostate cancer[J]. Eur Urol Focus, 2019, 5(2): 147-154. doi: 10.1016/j.euf.2019.01.016
[5] Wang Y, Wang Y, Ci XP, et al. Molecular events in neuroendocrine prostate cancer development[J]. Nat Rev Urol, 2021, 18(10): 581-596. doi: 10.1038/s41585-021-00490-0
[6] Penson DF, Armstrong AJ, Concepcion R, et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE trial[J]. J Clin Oncol, 2016, 34(18): 2098-2106. doi: 10.1200/JCO.2015.64.9285
[7] Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer[J]. Nat Rev Urol, 2018, 15(5): 271-286. doi: 10.1038/nrurol.2018.22
[8] Beltran H, Rickman D, Park K, et al. Molecular characterization of neuroendocrine prostate cancer(NEPC)and identification of new drug targets[J]. J Clin Oncol, 2011, 29(15_suppl): 4536. doi: 10.1200/jco.2011.29.15_suppl.4536
[9] Storck WK, May AM, Westbrook TC, et al. The role of epigenetic change in therapy-induced neuroendocrine prostate cancer lineage plasticity[J]. Front Endocrinol, 2022, 13: 926585. doi: 10.3389/fendo.2022.926585
[10] Cheng Q, Butler W, Zhou Y, et al. Pre-existing Castration-resistant Prostate Cancer-like Cells in Primary Prostate Cancer Promote Resistance to Hormonal Therapy[J]. Eur Urol, 2022, 81(5): 446-455. doi: 10.1016/j.eururo.2021.12.039
[11] Abalde-Cela S, Piairo P, Diéguez L. The significance of circulating tumour cells in the clinic[J]. Acta Cytol, 2019, 63(6): 466-478. doi: 10.1159/000495417
[12] Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward[J]. Nat Rev Cancer, 2017, 17(12): 725-737. doi: 10.1038/nrc.2017.87
[13] Qian JQ, Hirasawa K, Bostwick DG, et al. Loss of p53 and c-myc overrepresentation in stage T(2-3) N(1-3) M(0) prostate cancer are potential markers for cancer progression[J]. Mod Pathol, 2002, 15(1): 35-44. doi: 10.1038/modpathol.3880487
[14] Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. doi: 10.1126/science.aah4199
[15] Zhou ZX, Flesken-Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer[J]. Cancer Res, 2006, 66(16): 7889-7898. doi: 10.1158/0008-5472.CAN-06-0486
[16] Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer[J]. Cancer Discov, 2017, 7(7): 736-749. doi: 10.1158/2159-8290.CD-16-1174
[17] Mosquera JM, Beltran H, Park K, et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal TreatmentRelated neuroendocrine prostate cancer[J]. Neoplasia, 2013, 15(1): 1-IN4. doi: 10.1593/neo.121550
[18] Lee JK, Phillips JW, Smith BA, et al. N-myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells[J]. Cancer Cell, 2016, 29(4): 536-547. doi: 10.1016/j.ccell.2016.03.001
[19] Dardenne E, Beltran H, Benelli M, et al. N-myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer[J]. Cancer Cell, 2016, 30(4): 563-577. doi: 10.1016/j.ccell.2016.09.005
[20] Beltran H, Oromendia C, Danila DC, et al. A phase Ⅱ trial of the aurora kinase A inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: efficacy and biomarkers[J]. Clin Cancer Res, 2019, 25(1): 43-51. doi: 10.1158/1078-0432.CCR-18-1912
[21] Ton AT, Foo J, Singh K, et al. Development of VPC-70619, a small-molecule N-myc inhibitor as a potential therapy for neuroendocrine prostate cancer[J]. Int J Mol Sci, 2022, 23(5): 2588. doi: 10.3390/ijms23052588
[22] Park JW, Lee JK, Witte ON, et al. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate[J]. Mod Pathol, 2017, 30(9): 1262-1272. doi: 10.1038/modpathol.2017.44
[23] Qi JF, Nakayama K, Cardiff RD, et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors[J]. Cancer Cell, 2010, 18(1): 23-38. doi: 10.1016/j.ccr.2010.05.024
[24] Liu QL, Pang JA, Wang LA, et al. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2[J]. J Pathol, 2021, 253(1): 106-118. doi: 10.1002/path.5557
[25] Grimm D, Bauer J, Wise P, et al. The role of SOX family members in solid tumours and metastasis[J]. Semin Cancer Biol, 2020, 67(Pt 1): 122-153.
[26] Metz EP, Wilder PJ, Dong JX, et al. Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide[J]. J Cell Physiol, 2020, 235(4): 3731-3740. doi: 10.1002/jcp.29267
[27] Kregel S, Kiriluk KJ, Rosen AM, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer[J]. PLoS One, 2013, 8(1): e53701. doi: 10.1371/journal.pone.0053701
[28] Bishop JL, Thaper D, Vahid S, et al. The master neural transcription factor BRN2is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer[J]. Cancer Discov, 2017, 7(1): 54-71. doi: 10.1158/2159-8290.CD-15-1263
[29] Bhagirath D, Yang TL, Tabatabai ZL, et al. BRN4 is a novel driver of neuroendocrine differentiation in castration-resistant prostate cancer and is selectively released in extracellular vesicles with BRN2[J]. Clin Cancer Res, 2019, 25(21): 6532-6545. doi: 10.1158/1078-0432.CCR-19-0498
[30] Guo HY, Ci XP, Ahmed M, et al. ONECUT2 is a driver of neuroendocrine prostate cancer[J]. Nat Commun, 2019, 10: 278. doi: 10.1038/s41467-018-08133-6
[31] Rotinen M, You S, Yang JL, et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis[J]. Nat Med, 2018, 24(12): 1887-1898. doi: 10.1038/s41591-018-0241-1
[32] Balanis NG, Sheu KM, Esedebe FN, et al. Pan-cancer convergence to a small-cell neuroendocrine phenotype that shares susceptibilities with hematological malignancies[J]. Cancer Cell, 2019, 36(1): 17-34.e7. doi: 10.1016/j.ccell.2019.06.005
[33] Baca SC, Takeda DY, Seo JH, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer[J]. Nat Commun, 2021, 12(1): 1979. doi: 10.1038/s41467-021-22139-7
[34] Brady NJ, Bagadion AM, Singh R, et al. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer[J]. Nat Commun, 2021, 12: 3372. doi: 10.1038/s41467-021-23780-y
[35] Cejas P, Xie YT, Font-Tello A, et al. Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer[J]. Nat Commun, 2021, 12(1): 5775. doi: 10.1038/s41467-021-26042-z
[36] Yegnasubramanian S, Haffner MC, Zhang YG, et al. DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity[J]. Cancer Res, 2008, 68(21): 8954-8967. doi: 10.1158/0008-5472.CAN-07-6088
[37] Ebihara T, Song C, Ryu SH, et al. Runx3 specifies lineage commitment of innate lymphoid cells[J]. Nat Immunol, 2015, 16(11): 1124-1133. doi: 10.1038/ni.3272
[38] Mahapatra S, Klee EW, Young CY, et al. Global methylation profiling for risk prediction of prostate cancer[J]. Clin Cancer Res, 2012, 18(10): 2882-2895. doi: 10.1158/1078-0432.CCR-11-2090
[39] Beltran H, Romanel A, Conteduca V, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer[J]. J Clin Investig, 2020, 130(4): 1653-1668. doi: 10.1172/JCI131041
[40] McCabe MT, Davis JN, Day ML. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway[J]. Cancer Res, 2005, 65(9): 3624-3632. doi: 10.1158/0008-5472.CAN-04-2158
[41] Kinoshita H, Shi Y, Sandefur C, et al. Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer[J]. Cancer Res, 2000, 60(13): 3623-3630.
[42] Kim DH, Sun D, Storck WK, et al. BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program[J]. Clin Cancer Res, 2021, 27(17): 4923-4936. doi: 10.1158/1078-0432.CCR-20-4968
[43] Kleb B, Estécio MRH, Zhang JX, et al. Differentially methylated genes and androgen receptor re-expression in small cell prostate carcinomas[J]. Epigenetics, 2016, 11(3): 184-193. doi: 10.1080/15592294.2016.1146851
[44] Clermont PL, Lin D, Crea F, et al. Polycomb-mediated silencing in neuroendocrine prostate cancer[J]. Clin Epigenetics, 2015, 7(1): 40. doi: 10.1186/s13148-015-0074-4
[45] Ballas N, Grunseich C, Lu DD, et al. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis[J]. Cell, 2005, 121(4): 645-657. doi: 10.1016/j.cell.2005.03.013
[46] Zhang X, Coleman IM, Brown LG, et al. SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer[J]. Clin Cancer Res, 2015, 21(20): 4698-4708. doi: 10.1158/1078-0432.CCR-15-0157
[47] Raj B, Irimia M, Braunschweig U, et al. A global regulatory mechanism for activating an exon network required for neurogenesis[J]. Mol Cell, 2014, 56(1): 90-103. doi: 10.1016/j.molcel.2014.08.011
[48] Lee AR, Gan Y, Tang YX, et al. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network[J]. EBioMedicine, 2018, 35: 167-177. doi: 10.1016/j.ebiom.2018.08.011
[49] Hsu EC, Rice MA, Bermudez A, et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1[J]. Proc Natl Acad Sci U S A, 2020, 117(4): 2032-2042. doi: 10.1073/pnas.1905384117
[50] Lee CF, Chen Y, Hernandez E, et al. The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer(NEPC): a new targeted therapy of NEPC[J]. Clin Transl Med, 2022, 12(2): e695. doi: 10.1002/ctm2.695
-
计量
- 文章访问数: 1481
- PDF下载数: 3450
- 施引文献: 0