代谢组学与泌尿系结石相关研究新进展

李宾, 吕蔡. 代谢组学与泌尿系结石相关研究新进展[J]. 临床泌尿外科杂志, 2022, 37(1): 74-79. doi: 10.13201/j.issn.1001-1420.2022.01.017
引用本文: 李宾, 吕蔡. 代谢组学与泌尿系结石相关研究新进展[J]. 临床泌尿外科杂志, 2022, 37(1): 74-79. doi: 10.13201/j.issn.1001-1420.2022.01.017
LI Bin, LV Cai. New progress in the study of metabonomics and urinary urolithiasis[J]. J Clin Urol, 2022, 37(1): 74-79. doi: 10.13201/j.issn.1001-1420.2022.01.017
Citation: LI Bin, LV Cai. New progress in the study of metabonomics and urinary urolithiasis[J]. J Clin Urol, 2022, 37(1): 74-79. doi: 10.13201/j.issn.1001-1420.2022.01.017

代谢组学与泌尿系结石相关研究新进展

详细信息
    通讯作者: 吕蔡,E-mail:lvcai815@163.com

    审校者

  • 中图分类号: R691.4

New progress in the study of metabonomics and urinary urolithiasis

More Information
  • 泌尿系结石是泌尿系统常见的非肿瘤疾病,其逐年升高的患病率和发病率给社会带来沉重的医疗负担,而目前泌尿系结石的确切病因尚未明确,早期诊断、预防及术后随访等均缺乏较简便、易行的方法。代谢组学是继基因组学、蛋白组学和转录组学之后的新兴“组学”,代谢组学通过检测生物体在受到外源刺激或基因修饰后机体内代谢物质的变化,从而探索整个生物体的代谢机制变化。利用代谢组学的方法研究泌尿系结石,有望为泌尿系结石病因、早期诊断、预防及术后随访提供新的思路。本文就代谢组学相关概念和研究方法及其在泌尿系结石方面的基础及临床研究最新进展作一综述。
  • 加载中
  • 表 1  不同代谢组学技术的比较

    技术 优点 缺点
    核磁共振 定量分析 不敏感(LOD=5 μmol/L)
    不破坏样本 启动成本高(100万美元)
    快速(每个样品2~3 min) 仪器占地面积大
    不需要衍生化 无法检测或识别盐和无机离子
    无需分离 无法检测非质子化化合物
    能检测大多数有机类 需要更大的样品量(0.1~0.5 mL)
    允许识别新的化学物质
    可识别大多数的光谱特征
    强大、成熟的技术
    可用于代谢物成像(fMRI或MRS)
    可以完全自动化分析
    兼容液体和固体
    仪器使用寿命长(超过20年)
    气相色谱质谱 强大、成熟的技术 破坏样本(样本不可恢复)
    启动成本适中(约15万美元) 要求样本衍生化
    定量分析(能校准) 需要分离
    样品体积适中(0.1~0.2 mL) 慢速(每个样品20~40 min)
    良好的灵敏度(LOD=0.5 μmol/L) 不能用于成像
    开发有大量的软件和数据库供代谢物鉴定 无法兼容固体
    检测大多数有机分子和一些无机分子 新化合物的识别比较困难
    良好的分离重现性
    可识别大部分光谱特征
    大部分可以自动化分析
    兼容气体和液体
    液相色谱质谱 极高的灵敏度(LOD=0.5 nmol/L) 破坏性(样本不可恢复)
    非常灵活的技术 不定量
    能检测大多数有机分子和一些无机分子 启动成本较高(30万美元)
    样本量小(10~100 μL) 慢速(每个样品15~40 min)
    可用于代谢物成像(MALDI或DESI) 通常需要分离
    无需分离即可完成(直接注射) 与气相色谱质谱相比,分离分辨率差、重现性低
    具有检测大部分的代谢物的潜力 仪器稳定性不如核磁共振或气相色谱质谱
    大部分可以自动化分析 与气体不兼容
    兼容固体和液体 大多数光谱特征尚无法识别
    新化合物的识别比较困难
    仪器寿命短(9年)
    下载: 导出CSV
  • [1]

    Kittanamongkolchai W, Vaughan LE, Enders FT, et al. The Changing Incidence and Presentation of Urinary Stones Over 3 Decades[J]. Mayo Clin Proc, 2018, 93(3): 291-299. doi: 10.1016/j.mayocp.2017.11.018

    [2]

    Scales CD Jr, Smith AC, Hanley JM, et al. Prevalence of kidney stones in the United States[J]. Eur Urol, 2012, 62(1): 160-165. doi: 10.1016/j.eururo.2012.03.052

    [3]

    Zeng GH, Mai ZL, Xia SJ, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017, 120(1): 109-116. doi: 10.1111/bju.13828

    [4]

    Rule AD, Lieske JC, Li X, et al. The ROKS nomogram for predicting a second symptomatic stone episode[J]. J Am Soc Nephrol, 2014, 25(12): 2878-2886. doi: 10.1681/ASN.2013091011

    [5]

    Fink HA, Wilt TJ, Eidman KE, et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline[J]. Ann Intern Med, 2013, 158(7): 535-543. doi: 10.7326/0003-4819-158-7-201304020-00005

    [6]

    王友铭, 许长宝, 王晓甫, 等. 河南省泌尿系结石住院患者流行病学特点及分析[J]. 临床泌尿外科杂志, 2021, 36(6): 458-463. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW202106007.htm

    [7]

    魏汉平, 焦志敏, 刘晓武, 等. 江苏常州885例泌尿系结石成分特点及与患者临床特征的关系[J]. 临床泌尿外科杂志, 2020, 35(10): 791-794, 799. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW202010007.htm

    [8]

    Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors[J]. Rev Urol, 2010, 12(2-3): e86-e96.

    [9]

    王施广, 王娟, 王振, 等. 泌尿系结石的流行病学研究进展[J]. 现代生物医学进展, 2016, 16(3): 597-600, 592. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201603053.htm

    [10]

    Ghani KR, Roghmann F, Sammon JD, et al. Emergency department visits in the United States for upper urinary tract stones: trends in hospitalization and charges[J]. J Urol, 2014, 191(1): 90-96. doi: 10.1016/j.juro.2013.07.098

    [11]

    Antonelli JA, Maalouf NM, Pearle MS, et al. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030[J]. Eur Urol, 2014, 66(4): 724-729. doi: 10.1016/j.eururo.2014.06.036

    [12]

    Shang W, Li L, Ren Y, et al. History of kidney stones and risk of chronic kidney disease: a meta-analysis[J]. PeerJ, 2017, 5: e2907. doi: 10.7717/peerj.2907

    [13]

    El-Zoghby ZM, Lieske JC, Foley RN, et al. Urolithiasis and the risk of ESRD[J]. Clin J Am Soc Nephrol, 2012, 7(9): 1409-1415. doi: 10.2215/CJN.03210312

    [14]

    Aune D, Mahamat-Saleh Y, Norat T, et al. Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies[J]. Eur J Epidemiol, 2018, 33(11): 1033-1047. doi: 10.1007/s10654-018-0426-4

    [15]

    Sancak EB, Reşorlu M, Akbas A, et al. Do Hypertension, diabetes mellitus and obesity increase the risk of severity of nephrolithiasis?[J]. Pak J Med Sci, 2015, 31(3): 566-571.

    [16]

    Wong Y, Cook P, Roderick P, et al. Metabolic Syndrome and Kidney Stone Disease: A Systematic Review of Literature[J]. J Endourol, 2016, 30(3): 246-253. doi: 10.1089/end.2015.0567

    [17]

    Zampini A, Nguyen AH, Rose E, et al. Defining Dysbiosis in Patients with Urolithiasis[J]. Sci Rep, 2019, 9(1): 5425. doi: 10.1038/s41598-019-41977-6

    [18]

    Parks JH, Coe FL, Evan AP, et al. Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time[J]. Nephrol Dial Transplant, 2009, 24(1): 130-136.

    [19]

    Pearle MS, Goldfarb DS, Assimos DG, et al. Medical management of kidney stones: AUA guideline[J]. J Urol, 2014, 192(2): 316-324. doi: 10.1016/j.juro.2014.05.006

    [20]

    Skolarikos A, Straub M, Knoll T, et al. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines[J]. Eur Urol, 2015, 67(4): 750-763. doi: 10.1016/j.eururo.2014.10.029

    [21]

    Milose JC, Kaufman SR, Hollenbeck BK, et al. Prevalence of 24-hour urine collection in high risk stone formers[J]. J Urol, 2014, 191(2): 376-380. doi: 10.1016/j.juro.2013.08.080

    [22]

    Nicholson JK, Lindon JC, EHolmes. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189. doi: 10.1080/004982599238047

    [23]

    黄晓晨, 宿树兰, 郭建明, 等. 代谢组学在中医药若干科学问题研究中的应用与思考[J]. 中草药, 2014, 45(2): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201402003.htm

    [24]

    王翔宇, 王苗苗, 肖荆, 等. 泌尿系结石代谢组学研究进展[J]. 现代泌尿外科杂志, 2019, 24(3): 242-245. doi: 10.3969/j.issn.1009-8291.2019.03.020

    [25]

    Chauton MS, Storseth TR, Johnsen G. High-resolution magic angle spinning 1H NMR analysis of whole cells of Thalassiosira pseudonana(Bacillariophyceae): broad range analysis of metabolic composition and nutritional value[J]. J Appl Phycol, 2003, 15(6): 533-542. doi: 10.1023/B:JAPH.0000004355.11837.1d

    [26]

    Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15(7): 473-484. doi: 10.1038/nrd.2016.32

    [27]

    Worley B, Powers R. Multivariate Analysis in Metabolomics[J]. Curr Metabolomics, 2013, 1(1): 92-107.

    [28]

    Szymańska E, Saccenti E, Smilde AK, et al. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies[J]. Metabolomics, 2012, 8(Suppl 1): 3-16.

    [29]

    Misra BB, van der Hooft JJ. Updates in metabolomics tools and resources: 2014-2015[J]. Electrophoresis, 2016, 37(1): 86-110. doi: 10.1002/elps.201500417

    [30]

    Spicer R, Salek RM, Moreno P, et al. Navigating freely-available software tools for metabolomics analysis[J]. Metabolomics, 2017, 13(9): 106. doi: 10.1007/s11306-017-1242-7

    [31]

    O'Shea K, Misra BB. Software tools, databases and resources in metabolomics: updates from 2018 to 2019[J]. Metabolomics, 2020, 16(3): 36. doi: 10.1007/s11306-020-01657-3

    [32]

    Misra BB, Mohapatra S. Tools and resources for metabolomics research community: A 2017-2018 update[J]. Electrophoresis, 2019, 40(2): 227-246. doi: 10.1002/elps.201800428

    [33]

    Garcia-Perez I, Villaseñor A, Wijeyesekera A, et al. Urinary metabolic phenotyping the slc26a6(chloride-oxalate exchanger)null mouse model[J]. J Proteome Res, 2012, 11(9): 4425-4435. doi: 10.1021/pr2012544

    [34]

    Gao S, Yang R, Peng Z, et al. Metabolomics analysis for hydroxy-L-proline-induced calcium oxalate nephrolithiasis in rats based on ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Sci Rep, 2016, 6: 30142. doi: 10.1038/srep30142

    [35]

    Chao Y, Gao S, Wang X, et al. Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1095: 258-266. doi: 10.1016/j.jchromb.2018.08.003

    [36]

    王学雷, 晁玉凡, 高松燕, 等. 基于UPLC-Q-TOF/MS平台的结晶肾损伤小鼠的尿液代谢组学研究[J]. 药学实践杂志, 2019, 37(2): 126-134. doi: 10.3969/j.issn.1006-0111.2019.02.006

    [37]

    Gao S, Chen W, Peng Z, et al. Urinary metabonomics elucidate the therapeutic mechanism of Orthosiphon stamineus in mouse crystal-induced kidney injury[J]. J Ethnopharmacol, 2015, 166: 323-332. doi: 10.1016/j.jep.2015.03.025

    [38]

    Chen W, Liu WR, Hou JB, et al. Metabolomic analysis reveals a protective effect of Fu-Fang-Jin-Qian-Chao herbal granules on oxalate-induced kidney injury[J]. Biosci Rep, 2019, 39(2): BSR20181833. doi: 10.1042/BSR20181833

    [39]

    赖丽嫦, 陈丰连, 王术玲, 等. 基于UPLC-Q/TOF-MS的广金钱草水提物抗肾草酸钙结石大鼠的血清代谢组学研究[J]. 中药新药与临床药理, 2020, 31(8): 950-959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY202008013.htm

    [40]

    刘晓晨. 金钱草和广金钱草中黄酮类化合物的鉴定比较及基于体内成分分析的金钱草抗大鼠肾草酸钙结石作用机制研究[D]. 石家庄: 河北医科大学, 2019.

    [41]

    Duan H, Guan N, Wu Y, et al. Identification of biomarkers for melamine-induced nephrolithiasis in young children based on ultra high performance liquid chromatography coupled to time-of-flight mass spectrometry(U-HPLC-Q-TOF/MS)[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2011, 879(30): 3544-3550. doi: 10.1016/j.jchromb.2011.09.039

    [42]

    高瑶, 林东红, 陈敏, 等. 基于液相色谱/电喷雾飞行时间质谱技术的结石症尿液代谢组学探讨[J]. 分析试验室, 2015, 34(6): 625-629. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201506002.htm

    [43]

    Wang X, Wang M, Ruan J, et al. Identification of urine biomarkers for calcium-oxalate urolithiasis in adults based on UPLC-Q-TOF/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1124: 290-297. doi: 10.1016/j.jchromb.2019.06.022

    [44]

    Duan X, Zhang T, Ou L, et al. 1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients[J]. Urolithiasis, 2020, 48(1): 27-35. doi: 10.1007/s00240-019-01132-2

    [45]

    张优, 卢宏涛, 谌卫, 等. 肾结石患者行输尿管镜术后尿液代谢产物轮廓分析[J]. 上海医学, 2015, 38(5): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SHYX201505014.htm

    [46]

    马超. 含钙肾结石病人血和尿液代谢组学研究[D]. 苏州: 苏州大学, 2018.

    [47]

    Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database[J]. Nucleic Acids Res, 2007, 35(Database issue): D521-D526

  • 加载中

(1)

计量
  • 文章访问数:  1680
  • PDF下载数:  960
  • 施引文献:  0
出版历程
收稿日期:  2020-09-07
刊出日期:  2022-01-06

目录