熊果酸抑制去势抵抗性前列腺癌22Rv1细胞生长的作用机制研究

周建甫, 殷振超, 陈炽炜, 等. 熊果酸抑制去势抵抗性前列腺癌22Rv1细胞生长的作用机制研究[J]. 临床泌尿外科杂志, 2022, 37(7): 527-531. doi: 10.13201/j.issn.1001-1420.2022.07.008
引用本文: 周建甫, 殷振超, 陈炽炜, 等. 熊果酸抑制去势抵抗性前列腺癌22Rv1细胞生长的作用机制研究[J]. 临床泌尿外科杂志, 2022, 37(7): 527-531. doi: 10.13201/j.issn.1001-1420.2022.07.008
ZHOU Jianfu, YIN Zhenchao, CHEN Chiwei, et al. Growth inhibition and the mechanisms of castration-resistant prostate cancer 22Rv1 cells by ursolic acid[J]. J Clin Urol, 2022, 37(7): 527-531. doi: 10.13201/j.issn.1001-1420.2022.07.008
Citation: ZHOU Jianfu, YIN Zhenchao, CHEN Chiwei, et al. Growth inhibition and the mechanisms of castration-resistant prostate cancer 22Rv1 cells by ursolic acid[J]. J Clin Urol, 2022, 37(7): 527-531. doi: 10.13201/j.issn.1001-1420.2022.07.008

熊果酸抑制去势抵抗性前列腺癌22Rv1细胞生长的作用机制研究

  • 基金项目:
    广东省中医药局面上项目(No:20202151);广东省医学科学技术研究基金(No:A2020239,A2020577);广东省粤港联合创新项目(No:2017A050506042,YN2018HK02)
详细信息

Growth inhibition and the mechanisms of castration-resistant prostate cancer 22Rv1 cells by ursolic acid

More Information
  • 目的 研究熊果酸(UA)对去势抵抗性前列腺癌22Rv1细胞生长的抑制作用并探讨其药理机制。方法 MTT法检测不同浓度UA分别作用22Rv1细胞12、24、48、72 h后对细胞的增殖抑制作用;倒置相差显微镜观察UA对22Rv1细胞形态的影响;克隆形成实验检测UA对22Rv1细胞平板克隆形成的影响;流式细胞术检测UA对22Rv1细胞凋亡的影响;Western印迹法检测UA对22Rv1细胞p38 MAPK蛋白和磷酸化、STAT3蛋白和磷酸化,以及NF-κB/p65蛋白表达的影响。结果 UA能显著抑制22Rv1细胞增殖,且抑制效应呈剂量和时间依赖性(P < 0.05);以5、10、20 μmol/L作为UA低、中、高浓度干预24 h,显微镜观察发现随着UA浓度增大,22Rv1细胞数目显著减少,细胞皱缩、质膜起泡;克隆形成实验结果显示,UA能显著减少22Rv1细胞克隆群落形成(P < 0.05);流式细胞术结果显示,UA能显著诱导22Rv1细胞凋亡细胞比例增多(P < 0.05);Western印迹结果显示,UA能增强p38 MAPK的磷酸化,并且抑制STAT3的磷酸化和NF-κB/p65蛋白的表达。结论 UA可抑制去势抵抗性前列腺癌22Rv1细胞的生长,促进22Rv1细胞凋亡,p38 MAPK/STAT3/NF-κB信号通路参与调控UA对22Rv1细胞的生长抑制作用。
  • 加载中
  • 图 1  不同浓度UA对22Rv1细胞形态的影响(×100)

    图 2  不同浓度UA对22Rv1细胞克隆形成的影响

    图 3  不同浓度UA对22Rv1细胞凋亡的影响

    图 4  不同浓度UA对22Rv1细胞p-p38 MAPK、p38 MAPK、p-STAT3、STAT3、NF-κB/p65蛋白表达的影响

    表 1  递增浓度UA处理细胞不同时间对22Rv1细胞增殖的影响 %,x±s

    时间 细胞增殖
    对照组(0 μmol/L) 5 μmol/L UA 10 μmol/L UA 15 μmol/L UA 20 μmol/L UA 30 μmol/L UA
    12 h 100.00±13.55 120.09±5.841) 103.51±5.55 95.04±2.861) 73.02±3.511) 51.50±6.661)
    24 h 100.00±3.23 94.90±4.25 71.85±5.971) 57.51±2.581) 44.27±2.291) 25.00±1.811)
    48 h 100.00±6.12 96.77±8.04 73.90±2.941) 18.01±1.081) 10.59±0.561) 8.66±0.471)
    72 h 100.00±4.43 85.91±2.861) 35.98±4.271) 7.43±0.331) 6.07±0.181) 6.28±0.621)
    在相同时间点不同浓度下与对照组(0 μmol/L)比较,1)P<0.05。
    下载: 导出CSV

    表 2  不同浓度UA对22Rv1细胞克隆形成及凋亡的影响 x±s

    项目 对照组(0 μmol/L) 5 μmol/L UA 10 μmol/L UA 20 μmol/L UA
    克隆数目 457.67±25.48 328.00±28.581) 142.67±31.391) 9.00±6.001)
    凋亡率/% 7.49±1.00 21.59±2.171) 27.09±6.001) 70.10±5.441)
    与对照组(0 μmol/L)比较,1)P<0.05。
    下载: 导出CSV
  • [1]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [2]

    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. doi: 10.3322/caac.21338

    [3]

    Karantanos T, Evans CP, Tombal B, et al. Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level[J]. Eur Urol, 2015, 67(3): 470-479. doi: 10.1016/j.eururo.2014.09.049

    [4]

    贾泽鹏, 陈泽宇, 高旭. 去势抵抗性前列腺癌的治疗进展[J]. 临床泌尿外科杂志, 2020, 35(4): 312-316, 320. https://lcmw.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=f48e31c5-189a-4856-bca9-80fb6affdd37

    [5]

    Shanmugam MK, Dai X, Kumar AP, et al. Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies[J]. Biochem Pharmacol, 2013, 85(11): 1579-1587. doi: 10.1016/j.bcp.2013.03.006

    [6]

    Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development[J]. Nat Rev Cancer, 2009, 9(8): 537-549. doi: 10.1038/nrc2694

    [7]

    Eluard B, Thieblemont C, Baud V. NF-κB in the New Era of Cancer Therapy[J]. Trends Cancer, 2020, 6(8): 677-687. doi: 10.1016/j.trecan.2020.04.003

    [8]

    Mohassab AM, Hassan HA, Abdelhamid D, et al. STAT3 transcription factor as target for anti-cancer therapy[J]. Pharmacol Rep, 2020, 72(5): 1101-1124. doi: 10.1007/s43440-020-00156-5

    [9]

    Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy[J]. N Engl J Med, 2012, 367(13): 1187-1197. doi: 10.1056/NEJMoa1207506

    [10]

    de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer[J]. N Engl J Med, 2011, 364(21): 1995-2005. doi: 10.1056/NEJMoa1014618

    [11]

    Zhou J, Wang Y, Xiang S, et al. Towards understanding androgen receptor-independent prostate cancer: an evolving paradigm[J]. Transl Cancer Res, 2020, 9(2): 415-417. doi: 10.21037/tcr.2020.01.25

    [12]

    Kim K, Shin EA, Jung JH, et al. Ursolic acid induces apoptosis in colorectal cancer cells partially via upregulation of MicroRNA-4500 and inhibition of JAK2/STAT3 phosphorylation[J]. Int J Mol Sci, 2018, 20(1): 1-13. doi: 10.3390/ijms20010001

    [13]

    Guo JL, Han T, Bao L, et al. Ursolic acid promotes the apoptosis of cervical cancer cells by regulating endoplasmic reticulum stress[J]. J Obstet Gynaecol Res, 2019, 45(4): 877-881. doi: 10.1111/jog.13919

    [14]

    Lin JH, Chen SY, Lu CC, et al. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine-resistant human pancreatic cancer cells[J]. Phytother Res, 2020, 34(8): 2053-2066. doi: 10.1002/ptr.6669

    [15]

    Zang YQ, Feng YY, Luo YH, et al. Glycitein induces reactive oxygen species-dependent apoptosis and G0/G1 cell cycle arrest through the MAPK/STAT3/NF-κB pathway in human gastric cancer cells[J]. Drug Dev Res, 2019, 80(5): 573-584.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1228
  • PDF下载数:  560
  • 施引文献:  0
出版历程
收稿日期:  2021-02-01
刊出日期:  2022-07-06

目录