免疫疗法在前列腺癌中的研究进展

吕淦, 李金蕊, 陈超. 免疫疗法在前列腺癌中的研究进展[J]. 临床泌尿外科杂志, 2022, 37(7): 551-558. doi: 10.13201/j.issn.1001-1420.2022.07.013
引用本文: 吕淦, 李金蕊, 陈超. 免疫疗法在前列腺癌中的研究进展[J]. 临床泌尿外科杂志, 2022, 37(7): 551-558. doi: 10.13201/j.issn.1001-1420.2022.07.013
LV Gan, LI Jinrui, CHEN Chao. Research progress of immunotherapy in prostate cancer[J]. J Clin Urol, 2022, 37(7): 551-558. doi: 10.13201/j.issn.1001-1420.2022.07.013
Citation: LV Gan, LI Jinrui, CHEN Chao. Research progress of immunotherapy in prostate cancer[J]. J Clin Urol, 2022, 37(7): 551-558. doi: 10.13201/j.issn.1001-1420.2022.07.013

免疫疗法在前列腺癌中的研究进展

  • 基金项目:
    浙江省自然科学基金(No:LY18H160063)
详细信息
    通讯作者: 陈超,E-mail:andy-2222@163.com

    Δ审校者

  • 中图分类号: R737.25

Research progress of immunotherapy in prostate cancer

More Information
  • 前列腺癌(PCa)的治疗在过去十年取得了重要的进展。随着免疫疗法在肿瘤治疗领域的不断深入,PCa的治疗正在进入肿瘤免疫治疗时代。如今的PCa免疫疗法主要包括肿瘤疫苗、免疫检查位点抑制剂和CAR-T细胞疗法等。与此同时,免疫疗法与其他疗法如放射治疗、激素治疗等的联合应用也是研究的热点。近年来,基因检测技术的飞速发展也在指导免疫疗法不断改进。现如今的免疫治疗方法为PCa治疗带来了更多新的途径和希望,但在临床应用方面依然有限,未来需要更深入的基础研究与临床试验来完善。本文就近年来免疫疗法在PCa中运用的最新进展作一综述。
  • 加载中
  • [1]

    Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2020, 70(4): 313.

    [2]

    Dong L, Zieren RC, Xue W, et al. Metastatic prostate cancer remains incurable, why?[J]. Asian J Urol, 2019, 6(1): 26-41. doi: 10.1016/j.ajur.2018.11.005

    [3]

    Swami U, McFarland TR, Nussenzveig R, et al. Advanced Prostate Cancer: Treatment Advances and Future Directions[J]. Trends Cancer, 2020, 6(8): 702-715. doi: 10.1016/j.trecan.2020.04.010

    [4]

    Gao J, Ward JF, Pettaway CA, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer[J]. Nat Med, 2017, 23(5): 551-555. doi: 10.1038/nm.4308

    [5]

    Melero I, Gomez-Roca C, Ferre P, et al. 315 W0180 novel anti-VISTA antibody: Rationale for target patient population and first-in-human trial design in monotherapy and in combination with anti-PD1 antibody[J]. Journal for Immuno Therapy of Cancer, 2020, 8(Suppl 3): 341-343.

    [6]

    Antonarakis ES, Piulats JM, Gross-Goupil M, et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase Ⅱ KEYNOTE-199 Study[J]. J Clin Oncol, 2020, 38(5): 395-405. doi: 10.1200/JCO.19.01638

    [7]

    Hansen AR, Massard C, Ott PA, et al. Pembrolizumab for advanced prostate adenocarcinoma: findings of the KEYNOTE-028 study[J]. Ann Oncol, 2018, 29(8): 1807-1813. doi: 10.1093/annonc/mdy232

    [8]

    Fiegle E, Doleschel D, Koletnik S, et al. Dual CTLA-4 and PD-L1 Blockade Inhibits Tumor Growth and Liver Metastasis in a Highly Aggressive Orthotopic Mouse Model of Colon Cancer[J]. Neoplasia, 2019, 21(9): 932-944. doi: 10.1016/j.neo.2019.07.006

    [9]

    Hannani D, Vétizou M, Enot D, et al. Erratum: anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25[J]. Cell Res, 2015, 25(3): 399-400. doi: 10.1038/cr.2015.28

    [10]

    Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy(CA184-043): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2014, 15(7): 700-712. doi: 10.1016/S1470-2045(14)70189-5

    [11]

    Beer TM, Kwon ED, Drake CG, et al. Randomized, Double-Blind, Phase Ⅲ Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer[J]. J Clin Oncol, 2017, 35(1): 40-47. doi: 10.1200/JCO.2016.69.1584

    [12]

    Sinha M, Zhang L, Subudhi S, et al. Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer[J]. J Immunother Cancer, 2021, 9(5): 51-72.

    [13]

    Cha HR, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer[J]. Cancer Res, 2020, 80(8): 1615-1623. doi: 10.1158/0008-5472.CAN-19-2948

    [14]

    Benzon B, Glavaris SA, Simons BW, et al. Combining immune check-point blockade and cryoablation in an immunocompetent hormone sensitive murine model of prostate cancer[J]. Prostate Cancer Prostatic Dis, 2018, 21(1): 126-136. doi: 10.1038/s41391-018-0035-z

    [15]

    Witt K, Evans-Axelsson S, Lundqvist A, et al. Inhibition of STAT3 augments antitumor efficacy of anti-CTLA-4 treatment against prostate cancer[J]. Cancer Immunol Immunother, 2021, 70(11): 3155-3166. doi: 10.1007/s00262-021-02915-6

    [16]

    Sharma P, Pachynski R, Narayan V, et al. Initial results from a phase Ⅱ study of nivolumab(NIVO)plus ipilimumab(IPI)for the treatment of metastatic castration-resistant prostate cancer(mCRPC; CheckMate 650)[J]. J Clini Oncol, 2019, 37(7_suppl): 142-142. doi: 10.1200/JCO.2019.37.7_suppl.142

    [17]

    Anti-PD-1-CTLA4 Combo Hits Prostate Cancer[J]. Cancer Discov, 2019, 9(5): 569-570.

    [18]

    Lin YX, Wang Y, Ding J, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021, 13(599): 599-615.

    [19]

    Madan RA, Antonarakis ES, Drake CG, et al. Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T[J]. J Natl Cancer Inst, 2020, 112(6): 562-573. doi: 10.1093/jnci/djaa021

    [20]

    Zhang L, Kandadi H, Yang H, et al. Long-term Sculpting of the B-cell Repertoire following Cancer Immunotherapy in Patients Treated with Sipuleucel-T[J]. Cancer Immunol Res, 2020, 8(12): 1496-1507. doi: 10.1158/2326-6066.CIR-20-0252

    [21]

    Gulley JL, Borre M, Vogelzang NJ, et al. Phase Ⅲ Trial of PROSTVAC in Asymptomatic or Minimally Symptomatic Metastatic Castration-Resistant Prostate Cancer[J]. J Clin Oncol, 2019, 37(13): 1051-1061. doi: 10.1200/JCO.18.02031

    [22]

    Abdul Sater H, Marté JL, Donahue RN, et al. Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer[J]. J Immunother Cancer, 2020, 8(1): 655-664.

    [23]

    Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer[J]. Nat Rev Urol, 2017, 14(8): 501-510. doi: 10.1038/nrurol.2017.77

    [24]

    Higano CS, Corman JM, Smith DC, et al. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer[J]. Cancer, 2008, 113(5): 975-984. doi: 10.1002/cncr.23669

    [25]

    Higano C, Saad F, Somer B. A phase Ⅲ trial of GVAX immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer(CRPC)[J]. J Clin Oncol, 2009, 27(Suppl 15S): 26-28.

    [26]

    Noguchi M, Arai G, Egawa S, et al. Mixed 20-peptide cancer vaccine in combination with docetaxel and dexamethasone for castration-resistant prostate cancer: a randomized phase Ⅱ trial[J]. Cancer Immunol Immunother, 2020, 69(5): 847-857. doi: 10.1007/s00262-020-02498-8

    [27]

    Simons BW, Cannella F, Rowley DT, et al. Bovine papillomavirus prostate cancer antigen virus-like particle vaccines are efficacious in advanced cancers in the TRAMP mouse spontaneous prostate cancer model[J]. Cancer Immunol Immunother, 2020, 69(4): 641-651. doi: 10.1007/s00262-020-02493-z

    [28]

    Shi X, Sun J, Li H, et al. Antitumor efficacy of interferon-γ-modified exosomal vaccine in prostate cancer[J]. Prostate, 2020, 80(11): 811-823. . doi: 10.1002/pros.23996

    [29]

    McNeel DG, Eickhoff JC, Johnson LE, et al. Phase Ⅱ Trial of a DNA Vaccine Encoding Prostatic Acid Phosphatase(pTVG-HP[MVI-816])in Patients With Progressive, Nonmetastatic, Castration-Sensitive Prostate Cancer[J]. J Clin Oncol, 2019, 37(36): 3507-3517. doi: 10.1200/JCO.19.01701

    [30]

    Fang Y, Mo F, Shou J, et al. A Pan-cancer Clinical Study of Personalized Neoantigen Vaccine Monotherapy in Treating Patients with Various Types of Advanced Solid Tumors[J]. Clin Cancer Res, 2020, 26(17): 4511-4520. doi: 10.1158/1078-0432.CCR-19-2881

    [31]

    McKay RR, Hafron JM, Ferro C, et al. A Retrospective Observational Analysis of Overall Survival with Sipuleucel-T in Medicare Beneficiaries Treated for Advanced Prostate Cancer[J]. Adv Ther, 2020, 37(12): 4910-4929. doi: 10.1007/s12325-020-01509-5

    [32]

    Obradovic AZ, Dallos MC, Zahurak ML, et al. T-Cell Infiltration and Adaptive Treg Resistance in Response to Androgen Deprivation With or Without Vaccination in Localized Prostate Cancer[J]. Clin Cancer Res, 2020, 26(13): 3182-3192. doi: 10.1158/1078-0432.CCR-19-3372

    [33]

    Marshall CH, FU W, Wang H, et al. Randomized Phase Ⅱ Trial of Sipuleucel-T with or without Radium-223 in Men with Bone-metastatic Castration-resistant Prostate Cancer[J]. Clin Cancer Res, 2021, 27(6): 1623-1630. doi: 10.1158/1078-0432.CCR-20-4476

    [34]

    Sternberg C, Armstrong A, Pili R, et al. Randomized, Double-Blind, Placebo-Controlled Phase Ⅲ Study of Tasquinimod in Men With Metastatic Castration-Resistant Prostate Cancer[J]. J Clin Oncol, 2016, 34(22): 2636-2643. doi: 10.1200/JCO.2016.66.9697

    [35]

    Fizazi K, Ulys A, Sengeløv L, et al. A randomized, double-blind, placebo-controlled phase Ⅱ study of maintenance therapy with tasquinimod in patients with metastatic castration-resistant prostate cancer responsive to or stabilized during first-line docetaxel chemotherapy[J]. Ann Oncol, 2017, 28(11): 2741-2746. doi: 10.1093/annonc/mdx487

    [36]

    Sanaei MJ, Taheri F, Heshmati M, et al. Comparing the frequency of CD33+ pSTAT3+ myeloid-derived suppressor cells and IL-17+ lymphocytes in patients with prostate cancer and benign prostatic hyperplasia[J]. Cell Biol Int, 2021, 45(10): 2086-2095. doi: 10.1002/cbin.11651

    [37]

    Dong L, Myers KV, Pienta KJ. Understanding the tumor-immune microenvironment in prostate cancer[J]. Curr Opin Oncol, 2021, 33(3): 231-237. doi: 10.1097/CCO.0000000000000719

    [38]

    Don-Doncow N, Escobar Z, Johansson M, et al. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells[J]. J Biol Chem, 2014, 289(23): 15969-71598. doi: 10.1074/jbc.M114.564252

    [39]

    Canesin G, Evans-Axelsson S, Hellsten R, et al. The STAT3 Inhibitor Galiellalactone Effectively Reduces Tumor Growth and Metastatic Spread in an Orthotopic Xenograft Mouse Model of Prostate Cancer[J]. Eur Urol, 2016, 69(3): 400-404. doi: 10.1016/j.eururo.2015.06.016

    [40]

    Hellsten R, Lilljebjörn L, Johansson M, et al. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors[J]. Prostate, 2019, 79(14): 1611-1621. doi: 10.1002/pros.23885

    [41]

    Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering[J]. Nature, 2017, 545(7655): 423-431. doi: 10.1038/nature22395

    [42]

    Junghans RP, Ma Q, Rathore R, et al. Phase Ⅰ Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response[J]. Prostate, 2016, 76(14): 1257-1270. doi: 10.1002/pros.23214

    [43]

    Slovin SF, Wang XY, Hullings M, et al. Chimeric antigen receptor(CAR+)modified T cells targeting prostate-specific membrane antigen(PSMA)in patients(pts)with castrate metastatic prostate cancer(CMPC)[J]. J Clin Oncol, 2013, 31(6): 2536-2536.

    [44]

    Ma Q, Gomes EM, Lo AS, et al. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy[J]. Prostate, 2014, 74(3): 286-296. doi: 10.1002/pros.22749

    [45]

    Hassani M, Hajari Taheri F, Sharifzadeh Z, et al. Construction of a chimeric antigen receptor bearing a nanobody against prostate a specific membrane antigen in prostate cancer[J]. J Cell Biochem, 2019, 120(6): 10787-10795. doi: 10.1002/jcb.28370

    [46]

    Foster AE, Mahendravada A, Shinners NP, et al. Regulated Expansion and Survival of Chimeric Antigen Receptor-Modified T Cells Using Small Molecule-Dependent Inducible MyD88/CD40[J]. Mol Ther, 2017, 25(9): 2176-2188. doi: 10.1016/j.ymthe.2017.06.014

    [47]

    Becerra RC, Hoof P, Paulson AS, et al. Ligand-inducible, prostate stem cell antigen(PSCA)-directed GoCAR-T cells in advanced solid tumors: Preliminary results from a dose escalation[J]. J Clin Oncol, 2019, 37(4_suppl): 283-285. doi: 10.1200/JCO.2019.37.4_suppl.283

    [48]

    Han J, Gao F, Geng S, et al. Minicircle DNA-Engineered CAR T Cells Suppressed Tumor Growth in Mice[J]. Mol Cancer Ther, 2020, 19(1): 178-186. doi: 10.1158/1535-7163.MCT-19-0204

    [49]

    Yang G, Zheng RY, Jin ZS. Correlations between microsatellite instability and the biological behaviour of tumours[J]. J Cancer Res Clin Oncol, 2019, 145(12): 2891-2899. doi: 10.1007/s00432-019-03053-4

    [50]

    Luchini C, Bibeau F, Ligtenberg M, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach[J]. Ann Oncol, 2019, 30(8): 1232-1243. doi: 10.1093/annonc/mdz116

    [51]

    Huang R, Haberberger J, Severson E, et al. A pan-cancer analysis of PD-L1 immunohistochemistry and gene amplification, tumor mutation burden and microsatellite instability in 48, 782 cases[J]. Mod Pathol, 2021, 34(2): 252-263. doi: 10.1038/s41379-020-00664-y

    [52]

    Marcus L, Lemery SJ, Keegan P, et al. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors[J]. Clin Cancer Res, 2019, 25(13): 3753-3758. doi: 10.1158/1078-0432.CCR-18-4070

    [53]

    Abida W, Cheng ML, Armenia J, et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade[J]. JAMA Oncol, 2019, 5(4): 471-478. doi: 10.1001/jamaoncol.2018.5801

    [54]

    Tucker MD, Zhu J, Marin D, et al. Pembrolizumab in men with heavily treated metastatic castrate-resistant prostate cancer[J]. Cancer Med, 2019, 8(10): 4644-4655. doi: 10.1002/cam4.2375

    [55]

    Subudhi SK, Vence L, Zhao H, et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer[J]. Sci Transl Med, 2020, 12(537): 3577-3588. doi: 10.1126/scitranslmed.aaz3577

    [56]

    Sun J, Li S, Wang F, et al. Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis[J]. BMC Med Genet, 2019, 20(1): 191. doi: 10.1186/s12881-019-0923-7

    [57]

    Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy[J]. Cancer Discov, 2016, 6(2): 202-216. doi: 10.1158/2159-8290.CD-15-0283

    [58]

    Rescigno P, Gurel B, Pereira R, et al. Characterizing CDK12-Mutated Prostate Cancers[J]. Clin Cancer Res, 2021, 27(2): 566-574. doi: 10.1158/1078-0432.CCR-20-2371

    [59]

    Kast F, Klein C, Umaña P, et al. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies[J]. Oncoimmunology, 2021, 10(1): 1869389. doi: 10.1080/2162402X.2020.1869389

    [60]

    Orlando D, Miele E, De Angelis B, et al. Adoptive Immunotherapy Using PRAME-Specific T Cells in Medulloblastoma[J]. Cancer Res, 2018, 78(12): 3337-3349. doi: 10.1158/0008-5472.CAN-17-3140

    [61]

    成丁财, 王睿昊, 昂小杰, 等. 基于单细胞测序筛选转移性前列腺癌靶基因[J]. 临床泌尿外科杂志, 2021, 36(8): 643-652. https://lcmw.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=eafb0d6f-ba5d-45b7-9f37-5ff83ded5c6a

  • 加载中
计量
  • 文章访问数:  1723
  • PDF下载数:  888
  • 施引文献:  0
出版历程
收稿日期:  2021-09-14
录用日期:  2022-06-08
刊出日期:  2022-07-06

目录