泌尿系结石动物模型的最新进展

许悦贤, 郝宗耀. 泌尿系结石动物模型的最新进展[J]. 临床泌尿外科杂志, 2022, 37(7): 559-563. doi: 10.13201/j.issn.1001-1420.2022.07.014
引用本文: 许悦贤, 郝宗耀. 泌尿系结石动物模型的最新进展[J]. 临床泌尿外科杂志, 2022, 37(7): 559-563. doi: 10.13201/j.issn.1001-1420.2022.07.014
XU Yuexian, HAO Zongyao. Recent advances in animal models of urinary calculi[J]. J Clin Urol, 2022, 37(7): 559-563. doi: 10.13201/j.issn.1001-1420.2022.07.014
Citation: XU Yuexian, HAO Zongyao. Recent advances in animal models of urinary calculi[J]. J Clin Urol, 2022, 37(7): 559-563. doi: 10.13201/j.issn.1001-1420.2022.07.014

泌尿系结石动物模型的最新进展

  • 基金项目:
    国家自然科学基金面上项目(No:82070724);安徽省自然科学基金面上项目(No:1908085MH246)
详细信息
    通讯作者: 郝宗耀,E-mail:haozongyao@163.com

    Δ审校者

  • 中图分类号: R691.4

Recent advances in animal models of urinary calculi

More Information
  • 近年来泌尿系结石发病率逐年上升,影响人们生活质量并加剧经济负担。尽管在治疗泌尿系结石方面取得了重大的技术进步,但其病因仍不清楚,在预防方面几乎没有取得进展。因此,迫切需要建立可靠的动物模型来研究结石形成的机制并评估新的干预措施。要想全面了解泌尿系结石形成的具体过程及防治方法,最好的方法是在建立一个可靠的、标准化的动物模型上进行研究。正是基于这一目标,本文就研究人员诱导泌尿系结石形成的方法进行综述,介绍迄今为现有动物模型的诱导方法和优缺点。
  • 加载中
  • [1]

    Liu Y, Chen Y, Liao B, et al. Epidemiology of urolithiasis in Asia[J]. Asian J Urol, 2018, 5(4): 205-214. doi: 10.1016/j.ajur.2018.08.007

    [2]

    Wang W, Fan J, Huang G, et al. Prevalence of kidney stones in mainland China: A systematic review[J]. Sci Rep, 2017, 7: 41630. doi: 10.1038/srep41630

    [3]

    Khan SR, Pearle MS, Robertson WG, et al. Kidney stones[J]. Nat Rev Dis Primers, 2016, 2: 16008. doi: 10.1038/nrdp.2016.8

    [4]

    Antonelli JA, Maalouf NM, Pearle MS, et al. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030[J]. Eur Urol, 2014, 66(4): 724-729. doi: 10.1016/j.eururo.2014.06.036

    [5]

    Lan C, Chen D, Liang X, et al. Integrative Analysis of miRNA and mRNA Expression Profiles in Calcium Oxalate Nephrolithiasis Rat Model[J]. Biomed Res Int, 2017, 2017: 8306736.

    [6]

    Zhou J, Jin J, Li X, et al. Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-L-proline-induced calcium oxalate urolithiasis in rats[J]. Urolithiasis, 2018, 46(3): 231-241. doi: 10.1007/s00240-017-0985-y

    [7]

    Sivalingam S, Nakada SY, Sehgal PD, et al. Dietary hydroxyproline induced calcium oxalate lithiasis and associated renal injury in the porcine model[J]. J Endourol, 2013, 27(12): 1493-1498. doi: 10.1089/end.2013.0185

    [8]

    Liu H, Ye T, Yang X, et al. H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway[J]. EBioMedicine, 2019, 50: 366-378. doi: 10.1016/j.ebiom.2019.10.059

    [9]

    Assimos DG. Re: N-Glycosylation Critically Regulates Function of Oxalate Transporter SLC26A6[J]. J Urol, 2017, 197(2): 411-412.

    [10]

    Jiang Z, Asplin JR, Evan AP, et al. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6[J]. Nat Genet, 2006, 38(4): 474-478. doi: 10.1038/ng1762

    [11]

    Letavernier E, Kauffenstein G, Huguet L, et al. ABCC6 Deficiency Promotes Development of Randall Plaque[J]. J Am Soc Nephrol, 2018, 29(9): 2337-2347. doi: 10.1681/ASN.2017101148

    [12]

    Bouderlique E, Tang E, Perez J, et al. Vitamin D and Calcium Supplementation Accelerates Randall's Plaque Formation in a Murine Model[J]. Am J Pathol, 2019, 189(11): 2171-2180. doi: 10.1016/j.ajpath.2019.07.013

    [13]

    Trojan BP, Trojan SJ, Navetta A, et al. Novel porcine model for calcium oxalate stone formation[J]. Int Urol Nephrol, 2017, 49(10): 1751-1761. doi: 10.1007/s11255-017-1657-0

    [14]

    Miller J, Chi T, Kapahi P, et al. Drosophila melanogaster as an emerging translational model of human nephrolithiasis[J]. J Urol, 2013, 190(5): 1648-1656. doi: 10.1016/j.juro.2013.03.010

    [15]

    Chen YH, Liu HP, Chen HY, et al. Ethylene glycol induces calcium oxalate crystal deposition in malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis[J]. Kidney Int, 2011, 80(4): 369-377. doi: 10.1038/ki.2011.80

    [16]

    Chung VY, Turney BW. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation[J]. BMC Urol, 2017, 17(1): 109. doi: 10.1186/s12894-017-0292-5

    [17]

    Lee IC, Ko JW, Park SH, et al. Melamine and cyanuric acid co-exposure causes renal dysfunction and structural damage via MAPKs and mitochondrial signaling[J]. Food Chem Toxicol, 2016, 96: 254-262. doi: 10.1016/j.fct.2016.08.013

    [18]

    Wang F, Liu Q, Jin L, et al. Combination exposure of melamine and cyanuric acid is associated with polyuria and activation of NLRP3 inflammasome in rats[J]. Am J Physiol Renal Physiol, 2018, 315(2): F199-F210. doi: 10.1152/ajprenal.00609.2017

    [19]

    Cong X, Gu X, Xu Y, et al. The true stone composition and abnormality of urinary metabolic lithogenic factors of rats fed diets containing melamine[J]. Urolithiasis, 2014, 42(3): 227-232. doi: 10.1007/s00240-013-0622-3

    [20]

    苏晓伟, 王大明, 丁德茂, 等. 感染性结石的相关临床易感因素研究[J]. 临床泌尿外科杂志, 2021, 36(4): 284-287. https://lcmw.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=3ae1ad24-0251-497c-8db7-5bc83588440b

    [21]

    Torzewska A, Rozalski A. Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances[J]. Microbiol Res, 2014, 169(7-8): 579-584. doi: 10.1016/j.micres.2013.09.020

    [22]

    Cherng JH, Hsu YJ, Liu CC, et al. Activities of Ca2+-related ion channels during the formation of kidney stones in an infection-induced urolithiasis rat model[J]. Am J Physiol Renal Physiol, 2019, 317(5): F1342-F1349. doi: 10.1152/ajprenal.00199.2019

    [23]

    洪扬, 叶海云, 黄晓波, 等. 大鼠感染性结石模型的探索研究[J]. 临床泌尿外科杂志, 2019, 34(10): 813-815. https://lcmw.chinajournal.net.cn/WKC/WebPublication/paperDigest.aspx?paperID=8253cbdd-81dd-47bd-bfe6-50ded20d9cec

    [24]

    Sahota A, Tischfield JA, Goldfarb DS, et al. Cystinuria: genetic aspects, mouse models, and a new approach to therapy[J]. Urolithiasis, 2019, 47(1): 57-66. doi: 10.1007/s00240-018-1101-7

    [25]

    Shen L, Sun X, Zhu H, et al. Comparison of renal function and metabolic abnormalities of cystine stone patients and calcium oxalate stone patients in China[J]. World J Urol, 2013, 31(5): 1219-1223. doi: 10.1007/s00345-012-0886-1

    [26]

    Zee T, Bose N, Zee J, et al. α-Lipoic acid treatment prevents cystine urolithiasis in a mouse model of cystinuria[J]. Nat Med, 2017, 23(3): 288-290. doi: 10.1038/nm.4280

    [27]

    Feliubadaló L, Arbonés ML, Mañas S, et al. Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis[J]. Hum Mol Genet, 2003, 12(17): 2097-2108. doi: 10.1093/hmg/ddg228

    [28]

    Ercolani M, Sahota A, Schuler C, et al. Bladder outlet obstruction in male cystinuria mice[J]. Int Urol Nephrol, 2010, 42(1): 57-63. doi: 10.1007/s11255-009-9597-y

    [29]

    Peters T, Thaete C, Wolf S, et al. A mouse model for cystinuria type Ⅰ[J]. Hum Mol Genet, 2003, 12(17): 2109-2120. doi: 10.1093/hmg/ddg189

    [30]

    Espino M, Font-Llitjós M, Vilches C, et al. Digenic Inheritance in Cystinuria Mouse Model[J]. PLoS One, 2015, 10(9): e0137277. doi: 10.1371/journal.pone.0137277

    [31]

    Trinchieri A, Montanari E. Prevalence of renal uric acid stones in the adult[J]. Urolithiasis, 2017, 45(6): 553-562. doi: 10.1007/s00240-017-0962-5

    [32]

    Butler R, Inzunza J, Suzuki H, et al. Uric acid stones in the urinary bladder of aryl hydrocarbon receptor(AhR)knockout mice[J]. Proc Natl Acad Sci USA, 2012, 109(4): 1122-1126. doi: 10.1073/pnas.1120581109

    [33]

    Carvalho M, Lulich JP, Osborne CA, et al. Role of urinary inhibitors of crystallization in uric acid nephrolithiasis: Dalmatian dog model[J]. Urology, 2003, 62(3): 566-570. doi: 10.1016/S0090-4295(03)00406-0

    [34]

    Assimos DG. Re: Stone Composition among First-Time Symptomatic Kidney Stone Formers in the Community[J]. J Urol, 2016, 195(2): 383-384.

    [35]

    Frick KK, Krieger NS, Bushinsky DA. Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat[J]. Curr Opin Nephrol Hypertens, 2015, 24(4): 336-344.

    [36]

    Hong X, Wang X, Wang T, et al. Role of nanobacteria in the pathogenesis of kidney stone formation[J]. Am J Transl Res, 2016, 8(7): 3227-3234.

    [37]

    粟宏伟, 王杰, 朱永生, 等. 钙化性纳米微粒致大鼠肾结石模型的构建[J]. 重庆医学, 45(3): 310-312.

    [38]

    Wong TY, Wu CY, Martel J, et al. Detection and characterization of mineralo-organic nanoparticles in human kidneys[J]. Sci Rep, 2015, 5: 15272. doi: 10.1038/srep15272

    [39]

    Zhang Y, Zhu R, Liu D, et al. Tetracycline attenuates calcifying nanoparticles-induced renal epithelial injury through suppression of inflammation, oxidative stress, and apoptosis in rat models[J]. Transl Androl Urol, 2019, 8(6): 619-630. doi: 10.21037/tau.2019.11.14

  • 加载中
计量
  • 文章访问数:  2332
  • PDF下载数:  2570
  • 施引文献:  0
出版历程
收稿日期:  2020-12-03
录用日期:  2022-05-13
刊出日期:  2022-07-06

目录