GSK-3β在泌尿系结石形成机制中的作用研究进展

陈策, 木拉提·马合木提. GSK-3β在泌尿系结石形成机制中的作用研究进展[J]. 临床泌尿外科杂志, 2022, 37(11): 880-884. doi: 10.13201/j.issn.1001-1420.2022.11.017
引用本文: 陈策, 木拉提·马合木提. GSK-3β在泌尿系结石形成机制中的作用研究进展[J]. 临床泌尿外科杂志, 2022, 37(11): 880-884. doi: 10.13201/j.issn.1001-1420.2022.11.017
CHEN Ce, Mulati· Mahemuti. Role of GSK-3β in the formation mechanism of urinary stones[J]. J Clin Urol, 2022, 37(11): 880-884. doi: 10.13201/j.issn.1001-1420.2022.11.017
Citation: CHEN Ce, Mulati· Mahemuti. Role of GSK-3β in the formation mechanism of urinary stones[J]. J Clin Urol, 2022, 37(11): 880-884. doi: 10.13201/j.issn.1001-1420.2022.11.017

GSK-3β在泌尿系结石形成机制中的作用研究进展

  • 基金项目:
    国家自然科学基金(No:81760128)
详细信息
    通讯作者: 木拉提·马合木提,E-mail:mekit@126.com
  • 中图分类号: R691.4

Role of GSK-3β in the formation mechanism of urinary stones

More Information
  • 糖原合成酶激酶-3β(GSK-3β)是一种在睾丸、胸腺、卵巢、肺、脑以及肾脏等组织广泛表达的活性丝氨酸/苏氨酸激酶,通过多种信号途径使细胞底物磷酸化,从而调节多种细胞功能,包括发育、代谢、基因转录、蛋白翻译、细胞骨架组织、细胞周期调控和凋亡等。大量研究发现,GSK-3β在氧化应激中发挥着重要的调控作用,而氧化应激是泌尿系结石的发展中起关键作用之一。本文就GSK-3β在泌尿系结石形成机制中的研究进展作一综述。
  • 加载中
  • 图 1  GSK-3β调节mPTP开放的机制

    图 2  GSK-3β调节Nrf2信号通路的机制

  • [1]

    Zeng G, Mai Z, Xia S, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017, 120(1): 109-116. doi: 10.1111/bju.13828

    [2]

    Wang Z, Zhang Y, Zhang J, et al. Recent advances on the mechanisms of kidney stone formation(Review)[J]. Int J Mol Med, 2021, 48(2): 149. doi: 10.3892/ijmm.2021.4982

    [3]

    Kandar CC, Sen D, Maity A. Anti-inflammatory potential of GSK-3 inhibitors[J]. Curr Drug Targets, 2021, 22(13): 1464-1476. doi: 10.2174/1389450122666210118150313

    [4]

    Cormier KW, Woodgett JR. Recent advances in understanding the cellular roles of GSK-3[J]. F1000Res, 2017, 6: F1000 Faculty Rev-167.

    [5]

    Robertson H, Hayes JD, Sutherland C. A partnership with the proteasome; the destructive nature of GSK3[J]. Biochem Pharmacol, 2018, 147: 77-92. doi: 10.1016/j.bcp.2017.10.016

    [6]

    Yang K, Chen Z, Gao J, et al. The key roles of GSK-3β in regulating mitochondrial activity[J]. Cell Physiol Biochem, 2017, 44(4): 1445-1459. doi: 10.1159/000485580

    [7]

    董新岩, 任珺, 盛建中. GSK-3β在相关疾病中的作用及致病机制的研究进展[J]. 生理科学进展, 2018, 49(2): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-SLKZ201802002.htm

    [8]

    Chethan S, Shanthi S, Freeman ML, et al. Inhibition of GSK-3β restores delayed gastric emptying in obesity-induced diabetic female mice[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319: G481-G493. doi: 10.1152/ajpgi.00227.2020

    [9]

    Yasui T, Okada A, Hamamoto S, et al. Pathophysiology-based treatment of urolithiasis[J]. Int J Urol, 2017, 24(1): 32-38. doi: 10.1111/iju.13187

    [10]

    崔建伟, 白云金, 尹山, 等. 含钙尿路结石病单核苷酸多态性研究进展[J]. 临床泌尿外科杂志, 2021, 36(8): 657-662, 667. doi: 10.13201/j.issn.1001-1420.2021.08.014

    [11]

    江绍钦, 李梦强, 陈珍霖, 等. 氯喹抑制高糖环境下前列腺癌PC3细胞增殖机制研究[J]. 临床泌尿外科杂志, 2021, 36(1): 46-50. doi: 10.13201/j.issn.1001-1420.2021.01.010

    [12]

    Millare B, O'Rourke B, Trayanova N. Hydrogen peroxide diffusion and scavenging shapes mitochondrial network instability and failure by sensitizing ROS-induced ROS release[J]. Sci Rep, 2020, 10(1): 15758. doi: 10.1038/s41598-020-71308-z

    [13]

    Müller M, Ahumada-Castro U, Sanhueza M, et al. Mitochondria and calcium regulation as basis of neurodegeneration associated with aging[J]. Front Neurosci, 2018, 12: 470. doi: 10.3389/fnins.2018.00470

    [14]

    Liu D, Yu H, Gao L, et al. The inhibition of GSK-3β promotes the production of reactive oxygen species via β-catenin/C/EBPα signaling in the spleen of zebrafish(Danio rerio)[J]. Fish Shellfish Immunol, 2018, 76: 110-120. doi: 10.1016/j.fsi.2018.02.040

    [15]

    Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review[J]. Crit Rev Food Sci Nutr, 2019, 59(13): 2125-2135. doi: 10.1080/10408398.2018.1439880

    [16]

    Wang M, Liu Y, Pan RL, et al. Protective effects of Myricarubra flavonoids against hypoxia/reoxygenation-induced cardiomyocyte injury via the regulation of the PI3K/Akt/GSK3β pathway[J]. Int J Mol Med, 2019, 43(5): 2133-2143.

    [17]

    Shin JH, Kim KM, Jeong JU, et al. Nrf2-heme oxygenase-1 attenuates high-glucose-induced epithelial-to-mesenchymal transition of renal tubule cells by inhibiting ROS-mediated PI3K/Akt/GSK-3βsignaling[J]. J Diabetes Res, 2019: 2510105.

    [18]

    Li C, Ge Y, Dworkin L, et al. The β isoform of GSK3 mediates podocyte autonomous injury in proteinuric glomerulopathy[J]. J Pathol, 2016, 239(1): 23-35. doi: 10.1002/path.4692

    [19]

    Theeuwes WF, Gosker HR, Schols AMWJ, et al. Regulation of PGC-1α expression by a GSK-3β-TFEB signaling axis in skeletal muscle[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(2): 118610. doi: 10.1016/j.bbamcr.2019.118610

    [20]

    Undi RB, Gutti U, Gutti RK. LiCl regulates mitochondrial biogenesis during megakaryocyte development[J]. J Trace Elem Med Biol, 2017, 39: 193-201. doi: 10.1016/j.jtemb.2016.10.003

    [21]

    Geto Z, Molla MD, Challa F, et al. Mitochondrial dynamic dysfunction as a main triggering factor for inflammation associated chronic non-communicable diseases[J]. J Inflamm Res, 2020, 13: 97-107. doi: 10.2147/JIR.S232009

    [22]

    周丽洁. 猴头菌素通过抑制人肝细胞癌PI3K/Akt/GSK-3β信号通路诱导线粒体膜通透性转移孔开放[D]. 华北理工大学, 2020.

    [23]

    Jin FJ, Wu ZZ, Hu X, et al. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility[J]. Cancer Biol Med, 2019, 16(1): 38-54. doi: 10.20892/j.issn.2095-3941.2018.0253

    [24]

    Vélez DE, Mestre-Cordero VE, Hermann R, et al. Rosuvastatin protects isolated hearts against ischemia-reperfusion injury: role of Akt-GSK-3β, metabolic environment, and mitochondrial permeability transition pore[J]. J Physiol Biochem, 2020, 76(1): 85-98. doi: 10.1007/s13105-019-00718-z

    [25]

    Wang C, Cai ZX, Wang W, et al. Piperine regulates glycogen synthase kinase-3β-related signaling and attenuates cognitive decline in D-galactose-induced aging mouse model[J]. J Nutr Biochem, 2020, 75: 108261. doi: 10.1016/j.jnutbio.2019.108261

    [26]

    Li ZG, Zhu HF, Liu C, et al. GSK-3β inhibition protects the rat heart from the lipopolysaccharide-induced inflammation injury via suppressing FOXO3A activity[J]. J Cell Mol Med, 2019, 23(11): 7796-7809. doi: 10.1111/jcmm.14656

    [27]

    Ranea-Robles P, Launay N, Ruiz M, et al. Aberrant regulation of the GSK-3β/NRF2 axis unveils a novel therapy for adrenoleukodystrophy[J]. EMBO Mol Med, 2018, 10(8): e8604.

    [28]

    Tu W, Wang H, Li S, et al. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases[J]. Aging Dis, 2019, 10(3): 637-651. doi: 10.14336/AD.2018.0513

    [29]

    Renaud CO, Ziros PG, Chartoumpekis DV, et al. Keap1/Nrf2 signaling: a new player in thyroid pathophysiology and thyroid cancer[J]. Front Endocrinol, 2019, 10: 510. doi: 10.3389/fendo.2019.00510

    [30]

    Ren ZL, Zhong H, Song CC, et al. Insulin promotes mitochondrial respiration and survival through PI3K/AKT/GSK3 pathway in human embryonic stem cells[J]. Stem Cell Reports, 2020, 15(6): 1362-1376. doi: 10.1016/j.stemcr.2020.10.008

    [31]

    Li Y, Chu L, Liu CF, et al. Protective effect of GSK-3β/Nrf2 mediated by dimethyl fumarate in middle cerebral artery embolization reperfusion rat model[J]. Curr Neurovasc Res, 2021, 18(4): 456-464. doi: 10.2174/1567202618666211109105024

    [32]

    Silva-Palacios A, Ostolga-Chavarría M, Zazueta C, et al. Nrf2: Molecular and epigenetic regulation during aging[J]. Ageing Res Rev, 2018, 47: 31-40. doi: 10.1016/j.arr.2018.06.003

    [33]

    Zhang J, Lai ZP, Chen P, et al. Glycogen synthase kinase-3β inhibitor SB216763 promotes DNA repair in ischemic retinal neurons[J]. Neural Regen Res, 2021, 16(2): 394-400. doi: 10.4103/1673-5374.290913

    [34]

    Fang Y, Zhao Y, He S, et al. Overexpression of FGF19 alleviates hypoxia/reoxygenation-induced injury of cardiomyocytes by regulating GSK-3β/Nrf2/ARE signaling[J]. Biochem Biophys Res Commun, 2018, 503(4): 2355-2362. doi: 10.1016/j.bbrc.2018.06.161

    [35]

    Shen XH, Hu B, Xu GT, et al. Activation of Nrf2/HO-1 pathway by glycogen synthase kinase-3β inhibition attenuates renal ischemia/reperfusion injury in diabetic rats[J]. Kidney Blood Press Res, 2017, 42(2): 369-378. doi: 10.1159/000477947

    [36]

    Lu M, Wang P, Qiao Y, et al. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition[J]. Redox Biol, 2019, 26: 101275. doi: 10.1016/j.redox.2019.101275

    [37]

    陈攀, 刘冬冬, 李哲铭, 等. 草酸钙结石与氧化应激相关性的研究进展[J]. 江苏医药, 2021, 47(1): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-YIYA202101023.htm

    [38]

    Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review[J]. Crit Rev Food Sci Nutr, 2019, 59(13): 2125-2135. doi: 10.1080/10408398.2018.1439880

    [39]

    Ergul AB, Kara M, Karakukcu C, et al. High doses of boron have no protective effect against nephrolithiasis or oxidative stress in a rat model[J]. Biol Trace Elem Res, 2018, 186(1): 218-225. doi: 10.1007/s12011-018-1294-1

  • 加载中

(2)

计量
  • 文章访问数:  1317
  • PDF下载数:  168
  • 施引文献:  0
出版历程
收稿日期:  2021-12-14
刊出日期:  2022-11-06

目录