TP53基因突变在前列腺癌患者中的临床特征及预后价值

祁峰, 李潇, 徐维章, 等. TP53基因突变在前列腺癌患者中的临床特征及预后价值[J]. 临床泌尿外科杂志, 2022, 37(12): 906-910. doi: 10.13201/j.issn.1001-1420.2022.12.004
引用本文: 祁峰, 李潇, 徐维章, 等. TP53基因突变在前列腺癌患者中的临床特征及预后价值[J]. 临床泌尿外科杂志, 2022, 37(12): 906-910. doi: 10.13201/j.issn.1001-1420.2022.12.004
QI Feng, LI Xiao, XU Weizhang, et al. Clinical features and prognostic value of TP53 gene mutation in patients with prostate cancer[J]. J Clin Urol, 2022, 37(12): 906-910. doi: 10.13201/j.issn.1001-1420.2022.12.004
Citation: QI Feng, LI Xiao, XU Weizhang, et al. Clinical features and prognostic value of TP53 gene mutation in patients with prostate cancer[J]. J Clin Urol, 2022, 37(12): 906-910. doi: 10.13201/j.issn.1001-1420.2022.12.004

TP53基因突变在前列腺癌患者中的临床特征及预后价值

详细信息

Clinical features and prognostic value of TP53 gene mutation in patients with prostate cancer

More Information
  • 目的 探索TP53基因在前列腺癌中的突变图谱,以及TP53突变与患者临床病理特征及预后之间的关系。方法 回顾性收集2011年8月—2022年2月在南京医科大学附属肿瘤医院泌尿外科诊治的97例前列腺癌患者的基本资料、二代测序(NGS)结果及长期随访资料。对比分析TP53突变型和野生型患者临床病理特征和生存结果。通过单因素和多因素Cox回归模型分析TP53突变对总体生存和至去势抵抗性前列腺癌(CRPC)时间的影响。结果 本研究中,TP53突变率为21.65%(21/97);最易发生突变的外显子是第5外显子(26.67%,8/30),最常见的突变类型是错义突变(46.67%,14/30);且组织检测突变的敏感性显著高于外周血。与TP53野生型相比,TP53突变型患者有更年轻的初诊年龄和更高的临床T分期、N分期和M分期。生存分析显示,TP53突变型患者的总体生存和至CRPC时间更短。TP53突变是影响至CRPC时间的独立危险因素。结论 在前列腺癌中,TP53突变与较早的初诊年龄、不良病理特征和较差预后显著相关。此外,TP53突变是影响至CRPC时间的独立危险因素。未来仍需要前瞻性、多中心大样本研究来验证本研究的结果。
  • 加载中
  • 图 1  TP53突变型和野生型患者总体生存和CRPC-free生存分析

    图 2  TP53突变患者突变位点和突变类型分析

    表 1  入组患者的基本资料及病理特征 M(P25P75),例(%)

    项目 总计(97例) TP53突变型(21例) TP53野生型(76例) P
    年龄/岁 69.00(63.50,74.00) 65.00(58.50,71.00) 70.00(65.00,75.75) 0.027
    PSA/(ng·mL-1) 87.24(23.89,290.30) 120.12(47.70,192.50) 73.50(18.875,329.00) 0.342
    T分期 0.010
        T2 30(30.93) 2(9.52) 28(36.84)
        T3 43(44.33) 9(42.86) 34(44.74)
        T4 23(23.71) 10(47.62) 13(17.11)
        Tx 1(1.03) 0(0.00) 1(1.32)
    N分期 0.035
        N0 36(37.11) 3(14.29) 33(43.42)
        N1 57(58.76) 17(80.95) 40(52.63)
        NX 4(4.12) 1(4.76) 3(3.95)
    M分期 0.001
        M0 29(29.90) 0(0.00) 29(38.16)
        M1 68(70.10) 21(100.00) 47(61.84)
    ISUP级组 0.518
        ISUP 1 1(1.03) 0(0.00) 1(1.32)
        ISUP 2 11(11.34) 1(4.76) 10(13.16)
        ISUP 3 10(10.31) 2(9.52) 8(10.53)
        ISUP 4 27(27.84) 4(19.05) 23(30.26)
        ISUP 5 48(49.48) 14(66.67) 34(44.74)
      ISUP:国际泌尿病理学会。
    下载: 导出CSV

    表 2  97例前列腺癌患者总体生存和至CRPC时间多因素分析结果

    项目 B SE HR 95%CI P
    总体生存
    TP53(突变型vs.野生型) 0.566 0.483 1.761 0.683~4.536 0.241
    至CRPC时间
    TP53(突变型vs.野生型) 1.421 0.355 4.140 2.066~8.295 < 0.001
      CRPC:去势抵抗性前列腺癌。
    下载: 导出CSV

    表 3  7例接受组织和血液配对检测患者的突变情况分析 %

    患者序列 血浆特有 组织特有 共有
    患者1 0.00 85.71 14.29
    患者2 0.00 0.00 100.00
    患者3 37.04 48.15 14.81
    患者4 3.17 46.03 50.79
    患者5 0.00 0.00 100.00
    患者6 0.00 100.00 0.00
    患者7 0.00 50.00 50.00
    平均 5.74 47.13 47.13
    下载: 导出CSV
  • [1]

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. doi: 10.3322/caac.21708

    [2]

    杨雄, 金泓宇, 宫丽娜, 等. 以多西他赛为基础的新辅助化疗在前列腺癌中的应用进展[J]. 临床泌尿外科杂志, 2021, 38(2): 120-125. doi: 10.13201/j.issn.1001-1420.2021.02.008

    [3]

    Mijit M, Caracciolo V, Melillo A, et al. Role of p53 in the regulation of cellular senescence[J]. Biomolecules, 2020, 10(3): 420. doi: 10.3390/biom10030420

    [4]

    Baugh EH, Ke H, Levine AJ, et al. Why are there hotspot mutations in the TP53 gene in human cancers?[J]. Cell Death Differ, 2018, 25(1): 154-160. doi: 10.1038/cdd.2017.180

    [5]

    Annala M, Vandekerkhove G, Khalaf D, et al. Circulating Tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4): 444-457. doi: 10.1158/2159-8290.CD-17-0937

    [6]

    Dong B, Fan L, Yang B, et al. Use of circulating tumor dna for the clinical management of metastatic castration-resistant prostate cancer: a multicenter, real-world study[J]. J Natl Compr Canc Netw, 2021, 19(8): 905-914. doi: 10.6004/jnccn.2020.7663

    [7]

    Ehdaie B, Carlsson S, Vickers A. Racial disparities in low-risk prostate cancer[J]. JAMA, 2019, 321(17): 1726-1727.

    [8]

    Ateeq B, Bhatia V, Goel S. Molecular discriminators of racial disparities in prostate cancer[J]. Trends Cancer, 2016, 2(3): 116-120. doi: 10.1016/j.trecan.2016.01.005

    [9]

    Liu Z, Guo H, Zhu Y, et al. TP53 alterations of hormone-naïve prostate cancer in the Chinese population[J]. Prostate Cancer Prostatic Dis, 2021, 24(2): 482-491. doi: 10.1038/s41391-020-00302-3

    [10]

    张挺维, 韦煜, 潘剑, 等. TP53突变在中国前列腺癌患者中的临床特征及预后价值研究[J]. 中华外科杂志, 2021, 59(11): 897-901. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW202212004.htm

    [11]

    Sun J, Zhang K, Cai Z, et al. Identification of critical pathways and hub genes in TP53 mutation prostate cancer by bioinformatics analysis[J]. Biomark Med, 2019, 13(10): 831-840. doi: 10.2217/bmm-2019-0141

    [12]

    Al Zoubi MS, Otoum R, Alorjani MS, et al. TP53, SPOP and PIK3CA genes status in prostate cancer[J]. Asian Pac J Cancer Prev, 2020, 21(11): 3365-3371. doi: 10.31557/APJCP.2020.21.11.3365

    [13]

    Adorno M, Cordenonsi M, Montagner M, et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis[J]. Cell, 2009, 137(1): 87-98. doi: 10.1016/j.cell.2009.01.039

    [14]

    Sauer L, Gitenay D, Vo C, et al. Mutant p53 initiates a feedback loop that involves Egr-1/EGF receptor/ERK in prostate cancer cells[J]. Oncogene, 2010, 29(18): 2628-2637. doi: 10.1038/onc.2010.24

    [15]

    Wang W, Cheng B, Miao L, et al. Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression[J]. Cell Death Dis, 2013, 4: e574. doi: 10.1038/cddis.2013.97

    [16]

    Hamid AA, Gray KP, Shaw G, et al. Compound genomic alterations of TP53, PTEN, and RB1 Tumor suppressors in localized and metastatic prostate cancer[J]. Eur Urol, 2019, 76(1): 89-97. doi: 10.1016/j.eururo.2018.11.045

    [17]

    De Laere B, Oeyen S, Mayrhofer M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2019, 25(6): 1766-1773. doi: 10.1158/1078-0432.CCR-18-1943

    [18]

    Kaur HB, Lu J, Guedes LB, et al. TP53 missense mutation is associated with increased tumor-infiltrating T cells in primary prostate cancer[J]. Hum Pathol, 2019, 87: 95-102. doi: 10.1016/j.humpath.2019.02.006

    [19]

    Zou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer[J]. Cancer Discov, 2017, 7(7): 736-749. doi: 10.1158/2159-8290.CD-16-1174

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1501
  • PDF下载数:  476
  • 施引文献:  0
出版历程
收稿日期:  2022-07-05
刊出日期:  2022-12-06

目录