干细胞治疗迟发性性腺功能减退症的研究进展

赵伟, 刘春. 干细胞治疗迟发性性腺功能减退症的研究进展[J]. 临床泌尿外科杂志, 2023, 38(4): 310-314. doi: 10.13201/j.issn.1001-1420.2023.04.015
引用本文: 赵伟, 刘春. 干细胞治疗迟发性性腺功能减退症的研究进展[J]. 临床泌尿外科杂志, 2023, 38(4): 310-314. doi: 10.13201/j.issn.1001-1420.2023.04.015
ZHAO Wei, LIU Chun. Research progress of stem cell in the treatment of late-onset hypogonadism[J]. J Clin Urol, 2023, 38(4): 310-314. doi: 10.13201/j.issn.1001-1420.2023.04.015
Citation: ZHAO Wei, LIU Chun. Research progress of stem cell in the treatment of late-onset hypogonadism[J]. J Clin Urol, 2023, 38(4): 310-314. doi: 10.13201/j.issn.1001-1420.2023.04.015

干细胞治疗迟发性性腺功能减退症的研究进展

  • 基金项目:
    山西省自然科学基金项目(No:201901D111344)
详细信息

Research progress of stem cell in the treatment of late-onset hypogonadism

More Information
  • 迟发性性腺功能减退症(LOH)是困扰中老年男性的常见疾病。目前的睾酮替代疗法存在各种弊端。近年来,随着再生医学研究的不断发展,干细胞治疗越来越成为研究热点。本文主要介绍以诱导多能干细胞(iPSCs)、睾丸间质干细胞(SLCs)和间充质干细胞(MSCs)为来源的干细胞治疗LOH的研究进展,重点比较各方案的不同及其产生细胞的有效性和安全性。目前关于干细胞治疗仍处于早期研究阶段,治疗的安全性、免疫排斥等问题仍有待解决。相信随着研究的进展,以MSCs为代表的干细胞将在LOH治疗中发挥重要作用。
  • 加载中
  • [1]

    Barbonetti A, D'Andrea S, Francavilla S. Testosterone replacement therapy[J]. Andrology, 2020, 8(6): 1551-1566. doi: 10.1111/andr.12774

    [2]

    梁国庆, 刘晓强. 迟发性性腺功能减退症的诊治进展[J]. 中国男科学杂志, 2020, 34(5): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-NXXX202005018.htm

    [3]

    Li L, Li Y, Sottas C, et al. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells[J]. Proc Natl Acad Sci U S A, 2019, 116(46): 23274-23283. doi: 10.1073/pnas.1908207116

    [4]

    Li L, Miu KK, Gu S, et al. Comparison of multi-lineage differentiation of hiPSCs reveals novel miRNAs that regulate lineage specification[J]. Sci Rep, 2018, 8(1): 9630. doi: 10.1038/s41598-018-27719-0

    [5]

    Chen P, Zirkin BR, Chen H. Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications[J]. Endocr Rev, 2020, 41(1): 22-32. doi: 10.1210/endrev/bnz013

    [6]

    Peak TC, Haney NM, Wang W, et al. Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism[J]. World J Stem Cells, 2016, 8(10): 306-315. doi: 10.4252/wjsc.v8.i10.306

    [7]

    Jiang MH, Cai B, Tuo Y, et al. Characterization of Nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction[J]. Cell Res, 2014, 24(12): 1466-1485. doi: 10.1038/cr.2014.149

    [8]

    Zang ZJ, Wang J, Chen Z, et al. Transplantation of CD51+ Stem Leydig Cells: A New Strategy for the Treatment of Testosterone Deficiency[J]. Stem Cells, 2017, 35(5): 1222-1232. doi: 10.1002/stem.2569

    [9]

    Zhang M, Wang J, Deng C, et al. Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production[J]. Cell Death Dis, 2017, 8(10): e3123. doi: 10.1038/cddis.2017.531

    [10]

    Eliveld J, van den Berg EA, Chikhovskaya JV, et al. Primary human testicular PDGFRα+ cells are multipotent and can be differentiated into cells with Leydig cell characteristics in vitro[J]. Hum Reprod, 2019, 34(9): 1621-1631. doi: 10.1093/humrep/dez131

    [11]

    Green CD, Ma Q, Manske GL, et al. A Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell RNA-Seq[J]. Dev Cell, 2018, 46(5): 651-667. e10. doi: 10.1016/j.devcel.2018.07.025

    [12]

    Shen YC, Shami AN, Moritz L, et al. TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice[J]. Nat Commun, 2021, 12(1): 3876. doi: 10.1038/s41467-021-24130-8

    [13]

    Yeap BB, Page ST, Grossmann M. Testosterone treatment in older men: clinical implications and unresolved questions from the Testosterone Trials[J]. Lancet Diabetes Endocrinol, 2018, 6(8): 659-672. doi: 10.1016/S2213-8587(17)30416-3

    [14]

    Xia K, Chen H, Wang J, et al. Restorative functions of Autologous Stem Leydig Cell transplantation in a Testosterone-deficient non-human primate model[J]. Theranostics, 2020, 10(19): 8705-8720. doi: 10.7150/thno.46854

    [15]

    Li L, Papadopoulos V. Advances in stem cell research for the treatment of primary hypogonadism[J]. Nat Rev Urol, 2021, 18(8): 487-507. doi: 10.1038/s41585-021-00480-2

    [16]

    Li L, Li Y, Sottas C, et al. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells[J]. Proc Natl Acad Sci U S A, 2019, 116(46): 23274-23283. doi: 10.1073/pnas.1908207116

    [17]

    Ishida T, Koyanagi-Aoi M, Yamamiya D, et al. Differentiation of Human Induced Pluripotent Stem Cells Into Testosterone-Producing Leydig-like Cells[J]. Endocrinology, 2021, 162(12).

    [18]

    Watanabe D, Koyanagi-Aoi M, Taniguchi-Ikeda M, et al. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture[J]. Stem Cells Transl Med, 2018, 7(1): 34-44. doi: 10.1002/sctm.17-0021

    [19]

    Yang Y, Su Z, Xu W, et al. Directed mouse embryonic stem cells into leydig-like cells rescue testosterone-deficient male rats in vivo[J]. Stem Cells Dev, 2015, 24(4): 459-470. doi: 10.1089/scd.2014.0370

    [20]

    Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation[J]. Andrology, 2020, 8(4): 862-878. doi: 10.1111/andr.12713

    [21]

    Li ZH, Lu JD, Li SJ, et al. Generation of Leydig-like cells: approaches, characterization, and challenges[J]. Asian J Androl, 2022, 24(4): 335-344. doi: 10.4103/aja202193

    [22]

    Hou L, Dong Q, Wu YJ, et al. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro[J]. Kaohsiung J Med Sci, 2016, 32(1): 1-9. doi: 10.1016/j.kjms.2015.10.008

    [23]

    Yan D, Tang B, Yan L, et al. Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting The Proliferation And Differentiation, Thereby Promoting The Hematopoietic Factors[J]. Onco Targets Ther, 2019, 12: 9685-9696. doi: 10.2147/OTT.S209937

    [24]

    Zhang ZY, Xing XY, Ju GQ, et al. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model[J]. Asian J Androl, 2017, 19(5): 543-547. doi: 10.4103/1008-682X.186186

    [25]

    闫秀文, 刘春, 田翡. 碱性成纤维细胞生长因子在大鼠BMSCs向睾丸Leydig细胞分化中的作用研究[J]. 中华男科学杂志, 2015, 21(6): 494-499. doi: 10.13263/j.cnki.nja.2015.06.003

    [26]

    祝锦雄. 骨髓间充质干细胞向睾丸间质细胞分化过程中相关信号通路及基因的生物信息学研究[D]. 山西医科大学, 2020.

    [27]

    Curley M, Milne L, Smith S, et al. A young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging[J]. FASEB J, 2019, 33(1): 978-995. doi: 10.1096/fj.201800612R

    [28]

    Arora H, Qureshi R, Khodamoradi K, et al. Leptin secreted from testicular microenvironment modulates hedgehog signaling to augment the endogenous function of Leydig cells[J]. Cell Death Dis, 2022, 13(3): 208. doi: 10.1038/s41419-022-04658-3

    [29]

    Arora H, Zuttion M, Nahar B, et al. Subcutaneous Leydig Stem Cell Autograft: A Promising Strategy to Increase Serum Testosterone[J]. Stem Cells Transl Med, 2019, 8(1): 58-65. doi: 10.1002/sctm.18-0069

    [30]

    Trubiani O, Marconi GD, Pierdomenico SD, et al. Human Oral Stem Cells, Biomaterials and Extracellular Vesicles: A Promising Tool in Bone Tissue Repair[J]. Int J Mol Sci, 2019, 20(20): 4987. doi: 10.3390/ijms20204987

    [31]

    Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine[J]. Reprod Biol, 2020, 20(4): 447-459. doi: 10.1016/j.repbio.2020.07.002

    [32]

    Liang J, Li H, Mei J, et al. Sertoli cell-derived exosome-mediated transfer of miR-145-5p inhibits Leydig cell steroidogenesis by targeting steroidogenic factor 1[J]. FASEB J, 2021, 35(6): e21660.

    [33]

    Ma Y, Zhou Y, Zou SS, et al. Exosomes released from Sertoli cells contribute to the survival of Leydig cells through CCL20 in rats[J]. Mol Hum Reprod, 2022, 28(2): gaac002. doi: 10.1093/molehr/gaac002

    [34]

    Feng X, Xia K, Ke Q, et al. Transplantation of encapsulated human Leydig-like cells: A novel option for the treatment of testosterone deficiency[J]. Mol Cell Endocrinol, 2021, 519: 111039. doi: 10.1016/j.mce.2020.111039

    [35]

    Aljohani W, Ullah MW, Zhang X, et al. Bioprinting and its applications in tissue engineering and regenerative medicine[J]. Int J Biol Macromol, 2018, 107(Pt A): 261-275.

    [36]

    Baert Y, Dvorakova-Hortova K, Margaryan H, et al. Mouse in vitro spermatogenesis on alginate-based 3D bioprinted scaffolds[J]. Biofabrication, 2019, 11(3): 035011. doi: 10.1088/1758-5090/ab1452

    [37]

    Richer G, Hobbs RM, Loveland KL, et al. Long-Term Maintenance and Meiotic Entry of Early Germ Cells in Murine Testicular Organoids Functionalized by 3D Printed Scaffolds and Air-Medium Interface Cultivation[J]. Front Physiol, 2021, 12: 757565. doi: 10.3389/fphys.2021.757565

  • 加载中
计量
  • 文章访问数:  1011
  • PDF下载数:  302
  • 施引文献:  0
出版历程
收稿日期:  2022-07-03
刊出日期:  2023-04-06

目录