In vitro study of 7.5Fr disposable flexible ureteroscope for reducing intrarenal pressure and improving irrigation
-
摘要: 目的 比较国产7.5Fr一次性超细输尿管软镜与9.2Fr一次性输尿管软镜对肾内压及肾内灌注流量的影响。方法 采用2颗利用CT三维重建数据进行3D打印的硅胶肾脏模型[肾盂漏斗夹角(infundibulopelvic angle,IPA)分别>90°和≤90°],在100 cmH2O的悬挂式生理盐水灌注下,分别置入10/12F、12/14F和14/16F输尿管鞘,使用生物信号采集装置分别测量肾脏模型上盏、中盏、下盏以及肾盂部分的肾内压,并计算分钟灌流率。结果 使用7.5Fr软镜相较于9.2Fr软镜可以显著降低肾内压。使用10/12F、12/14F和14/16F输尿管鞘时,7.5Fr和9.2Fr软镜产生的肾盂内压分别为[(9.29±0.02) mmHg vs (25.11±0.35) mmHg]、[(0.80±0.03) mmHg vs (4.27±0.33) mmHg]和[(0.33±0.02) mmHg vs (0.06±0.06) mmHg]。在使用10/12F输尿管鞘的肾模型下盏,9.2Fr软镜在IPA≤90°和IPA>90°的模型中的肾内压分别达到了最高的45.71 mmHg和23.99 mmHg。而使用7.5Fr软镜时肾内压则维持较低水平(分别为3.73 mmHg和12.88 mmHg)。7.5Fr软镜较9.2Fr软镜显著增加了肾内灌流率。在使用10/12F、12/14F和14/16F输尿管鞘时,肾内灌流率分别为(36.0 mL/min vs 7.7 mL/min,P < 0.001)、(44.3 mL/min vs 30.7 mL/min,P<0.001)和(47.7 mL/min vs 41.0 mL/min,P=0.013)。结论 该7.5Fr超细一次性输尿管软镜具有降低肾内压和增加肾内灌流量的潜在优势,特别是在使用更细的输尿管鞘以及更小的肾盂漏斗角的应用场景中。Abstract: Objective To compare the effects between 7.5Fr disposable flexible ureteroscope (f-URS) and 9.2Fr ureteroscope on intrarenal pressure and irrigation.Methods Two 3D printed silicone kidney models with infundibulopelvic angle (IPA) over and less than 90° were created using CT 3D reconstruction imaging data and were implanted with 10/12F, 12/14F and 14/16F ureteral access sheathes under 100 cmH2O saline perfusion. The intrarenal pressure of upper, middle, lower calyces and renal pelvis in the model were measured respectively by probe puncture with a biological signal acquisition device, and the minute volume of irrigation was calculated.Results When using 10/12F, 12/14F, and 14/16F ureteral access sheaths, the pressures produced by 7.5Fr and 9.2Fr f-URS in renal pelvis were ([9.29±0.02] mmHg vs [25.11±0.35] mmHg), ([0.80±0.03] mmHg vs [4.27±0.33] mmHg), and ([0.33±0.02] mmHg vs [0.06±0.06] mmHg), respectively. In the lower calyx of the kidney model with IPA less than or greater than 90° and using a 10/12F ureteral access sheath, the intrarenal pressure reached 45.71 mmHg and 23.99 mmHg, respectively, when using a 9.2Fr ureteroscope. However, the use of a 7.5Fr ureteroscope maintained lower intrarenal pressures of 3.73 mmHg and 12.88 mmHg, respectively. The 7.5Fr ureteroscope significantly increased the irrigation rate compared to the 9.2Fr ureteroscope, with rates of (36.0 mL/min vs 7.7 mL/min, P < 0.001), (44.3 mL/min vs 30.7 mL/min, P < 0.001), and (47.7 mL/min vs 41.0 mL/min, P=0.013) observed when using 10/12F, 12/14F, and 14/16F ureteral access sheaths, respectively.Conclusion This 7.5Fr disposable f-URS can decrease intrarenal pressure and increase irrigation, especially when used with narrower ureteral access sheaths and smaller IPA.
-
Key words:
- disposable flexible ureteroscope /
- intrarenal pressure /
- irrigation flow
-
表 1 肾模型A中使用不同的输尿管鞘在4个解剖部位产生的肾内压
mmHg,X±S 解剖部位 肾内压 7.5Fr 9.2Fr 上盏 10/12F 10.32±0.03 26.55±0.52 12/14F 3.05±0.17 10.57±0.03 14/16F 2.04±0.05 4.07±0.06 中盏 10/12F 5.95±0.04 20.11±0.24 12/14F 2.61±0.02 6.58±0.10 14/16F 0.01±0.01 0.17±0.03 下盏 10/12F 12.88±0.07 23.99±0.50 12/14F 2.44±0.02 7.10±0.03 14/16F 1.26±0.02 1.65±0.10 肾盂 10/12F 9.29±0.02 25.11±0.35 12/14F 0.80±0.03 4.27±0.33 14/16F 0.33±0.02 -0.06±0.06 注:7.5Fr软镜产生的肾内压显著低于9.2Fr软镜,且使用越细的输尿管鞘两者差异越明显。 表 2 肾模型B中使用不同的输尿管鞘在4个解剖部位产生的肾内压
mmHg,X±S 解剖部位 肾内压 7.5Fr 9.2Fr 上盏 10/12F 13.63±0.37 43.28±0.04 12/14F 0.98±0.08 10.28±0.32 14/16F 0.00±0.08 -0.29±0.03 中盏 10/12F 13.67±0.33 36.01±0.04 12/14F 1.07±0.02 11.38±0.92 14/16F -0.09±0.05 0.13±0.02 下盏 10/12F 3.73±0.03 45.71±0.70 12/14F 1.21±0.05 3.29±1.01 14/16F 0.10±0.02 0.28±0.03 肾盂 10/12F 14.09±1.76 38.61±0.05 12/14F 3.32±0.15 10.77±1.94 14/16F 0.08±0.06 -0.13±0.03 注:肾模型B中7.5Fr软镜产生的肾内压显著低于9.2Fr软镜,而当使用14/16F输尿管鞘时几乎检测不到。 表 3 2颗肾模型中使用不同输尿管鞘时的分钟灌流量比较
mL/min,X±S 模型 分钟灌流量 P值 7.5Fr 9.2Fr 肾模型A 10/12F 36.00±2.65 7.70±1.53 < 0.001 12/14F 44.30±0.58 30.70±1.53 < 0.001 14/16F 47.70±0.58 41.00±2.65 0.013 肾模型B 10/12F 33.30±1.53 4.70±0.58 < 0.001 12/14F 46.00±1.00 34.30±0.58 < 0.001 14/16F 43.70±1.53 40.30±1.53 0.056 -
[1] 岑洪辉, 梁高照, 汪清. 输尿管软镜碎石术治疗肾结石对肾脏损伤的研究进展[J]. 现代泌尿外科杂志, 2022, 27(7): 614-618. doi: 10.3969/j.issn.1009-8291.2022.07.019
[2] Doizi S. Intrarenal Pressure: What Is Acceptable for Flexible Ureteroscopy and Percutaneous Nephrolithotomy?[J]. Eur Urol Focus, 2021, 7(1): 31-33. doi: 10.1016/j.euf.2021.01.010
[3] Kottooran C, Twum-Ampofo J, Lee J, et al. Evaluation of fluid absorption during flexible ureteroscopy in an in vivo porcine model[J]. BJU Int, 2023, 131(2): 213-218. doi: 10.1111/bju.15858
[4] Tokas T, Tzanaki E, Nagele U, et al. Role of Intrarenal Pressure in Modern Day Endourology(Mini-PCNL and Flexible URS): a Systematic Review of Literature[J]. Curr Urol Rep, 2021, 22(10): 52. doi: 10.1007/s11934-021-01067-5
[5] Farag M, Timm B, Davis N, et al. Pressurized-Bag Irrigation Versus Hand-Operated Irrigation Pumps During Ureteroscopic Laser Lithotripsy: Comparison of Infectious Complications[J]. J Endourol, 2020, 34(9): 914-918. doi: 10.1089/end.2020.0148
[6] 陈松宁, 唐浩, 陆彩连, 等. 输尿管软镜碎石术中监测肾盂压力的临床意义[J]. 中国医药科学, 2016, 6(9): 191-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKX201609059.htm
[7] 熊星, 杨江根, 赵振伟, 等. 输尿管软镜碎石术中肾盂内压力监测的临床应用与观察[J]. 临床泌尿外科杂志, 2021, 36(7): 573-576. doi: 10.13201/j.issn.1001-1420.2021.07.013
[8] Tokas T, Skolarikos A, Herrmann TRW, et al. Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures[J]. World J Urol, 2019, 37(1): 133-142. doi: 10.1007/s00345-018-2379-3
[9] MacCraith E, Yap LC, Elamin M, et al. Evaluation of the Impact of Ureteroscope, Access Sheath, and Irrigation System Selection on Intrarenal Pressures in a Porcine Kidney Model[J]. J Endourol, 2021, 35(4): 512-517. doi: 10.1089/end.2020.0838
[10] Fang L, Xie G, Zheng Z, et al. The Effect of Ratio of Endoscope-Sheath Diameter on Intrapelvic Pressure During Flexible Ureteroscopic Lasertripsy[J]. J Endourol, 2019, 33(2): 132-139. doi: 10.1089/end.2018.0774
[11] Dragos LB, Somani BK, Keller EX, et al. Characteristics of current digital single-use flexible ureteroscopes versus their reusable counterparts: an in-vitro comparative analysis[J]. Transl Androl Urol, 2019, 8(Suppl 4): S359-S370.
[12] Agrawal S, Patil A, Sabnis RB, et al. Initial experience with slimmest single-use flexible ureteroscope Uscope PU3033A(PUSENTM)in retrograde intrarenal surgery and its comparison with Uscope PU3022a: a single-center prospective study[J]. World J Uroly, 2021, 39(10): 3957-3962. doi: 10.1007/s00345-021-03707-4
[13] Geavlete B, Cozma C, Geavlete P. The "no-touch" technique in the flexible ureteroscopic approach of renal stones[J]. J Med Life, 2021, 14(4): 481-486. doi: 10.25122/jml-2021-0217
[14] De Coninck V, Keller EX, Rodríguez-Monsalve M, et al. Systematic review of ureteral access sheaths: facts and myths[J]. BJU Int, 2018, 122(6): 959-969. doi: 10.1111/bju.14389
[15] Sener TE, Cloutier J, Villa L, et al. Can We Provide Low Intrarenal Pressures with Good Irrigation Flow by Decreasing the Size of Ureteral Access Sheaths?[J]. J Endourol, 2016, 30(1): 49-55. doi: 10.1089/end.2015.0387
[16] Wright A, Williams K, Somani B, et al. Intrarenal pressure and irrigation flow with commonly used ureteric access sheaths and instruments[J]. Cent Eur J Urol, 2015, 68(4): 434-438. http://www.termedia.pl/Journal/-57/pdf-26062-10?filename=604.pdf
[17] Ng YH, Somani BK, Dennison A, et al. Irrigant flow and intrarenal pressure during flexible ureteroscopy: the effect of different access sheaths, working channel instruments, and hydrostatic pressure[J]. J Endourol, 2010, 24(12): 1915-1920. doi: 10.1089/end.2010.0188
[18] Ghoneim IA, Ziada AM, Elkatib SE. Predictive factors of lower calyceal stone clearance after Extracorporeal Shockwave Lithotripsy(ESWL): a focus on the infundibulopelvic anatomy[J]. Eur Urol, 2005, 48(2): 296-302;discussion 302. doi: 10.1016/j.eururo.2005.02.017
[19] Troxel SA, Low RK. Renal intrapelvic pressure during percutaneous nephrolithotomy and its correlation with the development of postoperative fever[J]. J Urol, 2002, 168(4 Pt 1): 1348-1351. http://www.onacademic.com/detail/journal_1000036199927510_817e.html