CSIG、SIRT1、CYR61、IL-8表达与良性前列腺增生临床进展相关性分析

马丁, 郭宇琛, 任瑞民, 等. CSIG、SIRT1、CYR61、IL-8表达与良性前列腺增生临床进展相关性分析[J]. 临床泌尿外科杂志, 2023, 38(9): 685-689. doi: 10.13201/j.issn.1001-1420.2023.09.009
引用本文: 马丁, 郭宇琛, 任瑞民, 等. CSIG、SIRT1、CYR61、IL-8表达与良性前列腺增生临床进展相关性分析[J]. 临床泌尿外科杂志, 2023, 38(9): 685-689. doi: 10.13201/j.issn.1001-1420.2023.09.009
MA Ding, GUO Yuchen, REN Ruimin, et al. Correlation analysis between the expression of CSIG, SIRT1, CYR61, IL-8 and the clinical progression of benign prostatic hyperplasia[J]. J Clin Urol, 2023, 38(9): 685-689. doi: 10.13201/j.issn.1001-1420.2023.09.009
Citation: MA Ding, GUO Yuchen, REN Ruimin, et al. Correlation analysis between the expression of CSIG, SIRT1, CYR61, IL-8 and the clinical progression of benign prostatic hyperplasia[J]. J Clin Urol, 2023, 38(9): 685-689. doi: 10.13201/j.issn.1001-1420.2023.09.009

CSIG、SIRT1、CYR61、IL-8表达与良性前列腺增生临床进展相关性分析

  • 基金项目:
    山西省应用基础研究计划项目(No:201901D211507)
详细信息
    通讯作者: 尚吉文,E-mail:sjw139@126.com
  • 中图分类号: R697

Correlation analysis between the expression of CSIG, SIRT1, CYR61, IL-8 and the clinical progression of benign prostatic hyperplasia

More Information
  • 目的 很多分子标记物的表达异常与良性前列腺增生(benign prostatic hyperplasia,BPH)临床进展密切相关,本研究探讨BPH组织中细胞衰老抑制基因(CSIG)、沉默信息调节因子2相关酶1(SIRT1)、富半胱氨酸61(CYR61)和白细胞介素-8(IL-8)蛋白表达水平,并分析与BPH临床进展相关因素之间相关性。方法 收集96例接受BPH手术患者的前列腺组织作为临床进展组,并且收集20例行全膀胱手术且无明显下尿路症状患者的前列腺组织作为对照组。临床数据如年龄、前列腺体积(PV)、血清前列腺特异性抗原(PSA)水平、国际前列腺症状评分(IPSS)、体重指数(BMI)、血糖(GLU)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)进行记录,利用Western-blot检测前列腺组织中CSIG、SIRT1、CYR61和IL-8蛋白表达水平,并与上述BPH临床数据进行相关性分析,免疫组化ABC法对前列腺组织中蛋白表达定位进行检测。结果 Western-blot结果表明与对照组比较,BPH临床进展组中CSIG、SIRT1、CYR61和IL-8蛋白表达水平显著增高(P < 0.05),免疫组化结果显示BPH临床进展组中CSIG、SIRT1、CYR61和IL-8阳性表达率分别为58.3%(56/96)、41.7%(40/96)、75.0%(72/96)和52.1%(50/96)。CSIG和CYR61蛋白表达水平与患者年龄、PV、血清PSA、TG呈正相关(P < 0.05),SIRT1蛋白表达水平与患者年龄、BMI呈正相关(P < 0.05),IL-8蛋白表达水平与患者年龄、PV、血清PSA呈正相关(P < 0.05)。结论 CSIG、SIRT1、CYR61和IL-8表达异常与BPH临床进展危险因素均存在不同程度的相关性,CSIG对BPH临床进展促进作用最为显著。
  • 加载中
  • 图 1  2组前列腺组织中CSIG、SIRT1、CYR61和IL-8蛋白表达的情况

    图 2  CSIG、SIRT1、CYR61和IL-8在BPH组织中的免疫组化染色情况(×200)

    表 1  BPH间质和上皮组织中CSIG、SIRT1、CYR61和IL-8分别表达情况 例(%)

    项目 总数 间质 上皮
    CSIG 56(58.3) 41(42.7) 15(15.6)
    SIRT1 40(41.7) 25(26.0) 15(15.6)
    CYR61 72(75.0) 54(56.3) 18(18.8)
    IL-8 50(52.1) 30(31.3) 20(20.8)
    下载: 导出CSV

    表 2  不同分子标记物表达与BPH临床进展组患者临床数据之间的相关性

    指标 CSIG SIRT1 CYR61 IL-8
    年龄 0.3331) 0.3381) 0.4341) 0.3941)
    PV 0.2071) 0.185 0.2071) 0.3361)
    PSA 0.2031) 0.199 0.2671) 0.3281)
    IPSS 0.177 0.026 0.053 0.122
    BMI 0.112 0.2041) 0.200 0.091
    GLU 0.088 0.005 0.036 0.062
    TG 0.2961) 0.153 0.3421) 0.167
    TC 0.096 0.060 0.007 0.089
    HDL 0.123 0.052 0.164 0.038
    LDL 0.057 0.032 0.073 0.052
    注:表示Pearson相关系数具有统计学意义,1)P < 0.05)。
    下载: 导出CSV
  • [1]

    Shao WH, Zheng CF, Ge YC, et al. Age-related changes for the predictors of benign prostatic hyperplasia in Chinese men aged 40 years or older[J]. Asian J Androl, 2023, 25(1): 132-136. doi: 10.4103/aja202223

    [2]

    María Molero J, Miñana B, Palacios-Moreno JM, et al. Real-world assessment and characteristics of men with benign prostatic hyperplasia(BPH)in primary care and urology clinics in Spain[J]. Int J Clin Pract, 2020, 74(11): e13602. http://www.xueshufan.com/publication/3038688129

    [3]

    Jin BR, An HJ. Baicalin alleviates benign prostate hyperplasia through androgen-dependent apoptosis[J]. Aging(Albany NY), 2020, 12(3): 2142-2155. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704022985754.html

    [4]

    Welén K, Damber JE. Androgens, aging, and prostate health[J]. Rev Endocr Metab Disord, 2022, 23(6): 1221-1231. doi: 10.1007/s11154-022-09730-z

    [5]

    Kim EY, Jin BR, Chung TW, et al. 6-sialyllactose ameliorates dihydrotestosterone-induced benign prostatic hyperplasia through suppressing VEGF-mediated angiogenesis[J]. BMB Rep, 2019, 52(9): 560-565. doi: 10.5483/BMBRep.2019.52.9.113

    [6]

    Li J, Li Y, Cao D, et al. The association between histological prostatitis and benign prostatic hyperplasia: a single-center retrospective study[J]. Aging Male, 2022, 25(1): 88-93.

    [7]

    Ma L, Zhao W, Zheng Q, et al. Ribosomal L1 domain and lysine-rich region are essential for CSIG/ RSL1D1 to regulate proliferation and senescence[J]. Biochem Biophys Res Commun, 2016, 469(3): 593-598. doi: 10.1016/j.bbrc.2015.12.004

    [8]

    Huang SB, Rivas P, Yang X, et al. SIRT1 inhibition-induced senescence as a strategy to prevent prostate cancer progression[J]. Mol Carcinog, 2022, 61(7): 702-716. doi: 10.1002/mc.23412

    [9]

    Kwon EJ, Park EJ, Yu H, et al. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression[J]. Connect Tissue Res, 2018, 59(3): 245-254.

    [10]

    Cao D, Sun R, Peng L, et al. Immune Cell Proinflammatory Microenvironment and Androgen-Related Metabolic Regulation During Benign Prostatic Hyperplasia in Aging[J]. Front Immunol, 2022, 13: 842008. doi: 10.3389/fimmu.2022.842008

    [11]

    陈佳炜, 海波, 董伟, 等. 钬激光前列腺剜除术和经尿道前列腺电切术治疗良性前列腺增生疗效和安全性的Meta分析[J]. 临床泌尿外科杂志, 2021, 36(6): 431-438. doi: 10.13201/j.issn.1001-1420.2021.06.002 https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2021.06.002

    [12]

    Wu D, Tang HX, Wu Y, et al. The possible association between serum interleukin 8 and acute urinary retention in Chinese patients with benign prostatic hyperplasia[J]. Andrologia, 2020, 52(11): e13763.

    [13]

    Smith DK, Hasanali SL, Wang J, et al. Promotion of epithelial hyperplasia by interleukin-8-CXCR axis in human prostate[J]. Prostate, 2020, 80(12): 938-949. doi: 10.1002/pros.24026

    [14]

    Yang Y, Sheng J, Hu S, et al. Estrogen and G protein-coupled estrogen receptor accelerate the progression of benign prostatic hyperplasia by inducing prostatic fibrosis[J]. Cell Death Dis, 2022, 13(6): 533. doi: 10.1038/s41419-022-04979-3

    [15]

    马丁, 任瑞民, 尚吉文, 等. CYR61和VEGF-C表达水平与良性前列腺增生临床进展的相关性分析[J]. 临床泌尿外科杂志, 2019, 34(6): 444-448. doi: 10.13201/j.issn.1001-1420.2019.06.008 https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2019.06.008

    [16]

    Jiang Z, Hao F, Zhu F, et al. RSL1D1 modulates cell senescence and proliferation via regulation of PPARγ mRNA stability[J]. Life Sci, 2022, 307: 120848. doi: 10.1016/j.lfs.2022.120848

    [17]

    Ballar Kirmizibayrak P, Erbaykent-Tepedelen B, Gozen O, et al. Divergent Modulation of Proteostasis in Prostate Cancer[J]. Adv Exp Med Biol, 2020, 1233: 117-151.

    [18]

    Rasha F, Mims BM, Castro-Piedras I, et al. The Versatility of Sirtuin-1 in Endocrinology and Immunology[J]. Front Cell Dev Biol, 2020, 8: 589016. doi: 10.3389/fcell.2020.589016

    [19]

    Huang F, Luo L, Wu Y, et al. Trilobatin promotes angiogenesis after cerebral ischemia-reperfusion injury via SIRT7/VEGFA signaling pathway in rats[J]. Phytother Res, 2022, 36(7): 2940-2951. doi: 10.1002/ptr.7487

    [20]

    Sun L, Huang T, Xu W, et al. Advanced glycation end products promote VEGF expression and thus choroidal neovascularization via Cyr61-PI3K/AKT signaling pathway[J]. Sci Rep, 2017, 7(1): 14925. doi: 10.1038/s41598-017-14015-6

    [21]

    Cao D, Sun R, Peng L, et al. Immune Cell Proinflammatory Microenvironment and Androgen-Related Metabolic Regulation During Benign Prostatic Hyperplasia in Aging[J]. Front Immunol, 2022, 13: 842008. doi: 10.3389/fimmu.2022.842008

    [22]

    Wu D, Tang HX, Wu Y, et al. The possible association between serum interleukin 8 and acute urinary retention in Chinese patients with benign prostatic hyperplasia[J]. Andrologia, 2020, 52(11): e13763.

    [23]

    Smith DK, Hasanali SL, Wang J, et al. Promotion of epithelial hyperplasia by interleukin-8-CXCR axis in human prostate[J]. Prostate, 2020, 80(12): 938-949. doi: 10.1002/pros.24026

  • 加载中

(2)

(2)

计量
  • 文章访问数:  783
  • PDF下载数:  109
  • 施引文献:  0
出版历程
收稿日期:  2022-09-07
刊出日期:  2023-09-06

目录