PAK2磷酸化激活TRIM28在前列腺癌进展中的作用机制研究

吴培康, 王可举. PAK2磷酸化激活TRIM28在前列腺癌进展中的作用机制研究[J]. 临床泌尿外科杂志, 2023, 38(10): 741-747. doi: 10.13201/j.issn.1001-1420.2023.10.004
引用本文: 吴培康, 王可举. PAK2磷酸化激活TRIM28在前列腺癌进展中的作用机制研究[J]. 临床泌尿外科杂志, 2023, 38(10): 741-747. doi: 10.13201/j.issn.1001-1420.2023.10.004
WU Peikang, WANG Keju. Mechanism research of PAK2 phosphorylating TRIM28 in the progression of prostate cancer[J]. J Clin Urol, 2023, 38(10): 741-747. doi: 10.13201/j.issn.1001-1420.2023.10.004
Citation: WU Peikang, WANG Keju. Mechanism research of PAK2 phosphorylating TRIM28 in the progression of prostate cancer[J]. J Clin Urol, 2023, 38(10): 741-747. doi: 10.13201/j.issn.1001-1420.2023.10.004

PAK2磷酸化激活TRIM28在前列腺癌进展中的作用机制研究

  • 基金项目:
    国家自然科学基金面上项目(No:81872079)
详细信息

Mechanism research of PAK2 phosphorylating TRIM28 in the progression of prostate cancer

More Information
  • 目的 研究P21蛋白活化酶2(p21-activated protein kinase 2,PAK2)在前列腺癌(prostate cancer,PCa)中的表达水平,并分析PAK2与PCa患者临床资料及PCa进展的相关性,进一步研究及分析PAK2磷酸化激活KRAB相关蛋白1即三重基序蛋白28(tripartite motif-containing 28,TRIM28)促进PCa进展的相关性,阐明PAK2在去势抵抗性前列腺癌(castration-resistant prostate cancer,CRPC)进展中的作用关系,探讨PAK2磷酸化激活TRIM28通路在PCa进展中扮演的角色,为治疗CRPC提供方法和思路。方法 使用ONCOMINE数据库预测PAK2在PCa组织和癌旁正常组织中的表达差异。分别采用Western Blot和RT-qPCR检测PAK2在收集的临样本(癌旁正常组织和PCa组织)中的表达差异。采用免疫组织化学(immunohistochemistry,IHC)检测PAK2在前列腺增生(BPH)组织、激素性前列腺癌(androgen dependent prostate cancer,HNPC)组织和CRPC组织中的表达差异,通过癌症基因组图谱(the cancer genome atlas,TCGA)数据库预测PAK2的不同表达水平对患者疾病无进展的影响差异。使用医学统计学方法收集、整理、分析统计140例PCa患者的临床病理特征与PAK2的关系。利用GEPIA数据库预测TRIM28与PAK2在PCa中的相关性。采用Western Blot方法检测PAK2表达水平的不同对TRIM28的磷酸化水平的影响。结果 在数据库ONCOMINE中显示,PCa组织中PAK2的表达水平高于其在癌旁正常组织中的表达水平,与我们收集的临床组织中的检测结果一致。PAK2在PCa组织中的RNA表达水平高于癌旁正常组织的表达水平。同样PAK2在PCa组织中的蛋白表达水平高于癌旁组织的表达水平。IHC结果显示PAK2在BPH组织、HNPC组织和CRPC组织中的表达水平逐渐升高。TCGA数据库显示,PCa患者中PAK2低表达水平较高表达水平有一个较长的疾病无进展生存期。患者临床资料统计分析得出PAK2的表达水平与患者的PSA水平、Gleason评分、临床分期、病理分级、转移、总生存期及疾病的生化复发情况密切相关,患者的PSA水平越高,Gleason评分越高,临床分期及病理分期越高,PAK2的表达水平越高,患者越容易发生转移及生化复发,患者的生存期越短,反之亦然。GEPIA数据库显示,PAK2与TRIM28呈正向相关性。荧光素酶报告基因实验显示,只转染PAK2过表达组的SOX2启动子区活性最高。而转染PAK2过表达及敲低TRIM28组的SOX2启动子区活性低于只转染PAK2过表达组,但是明显高于对照组。结论 PAK2在PCa中表达水平显著高于癌旁正常组织,在CRPC中表达水平最高,并且PAK2的表达水平与患者的PSA水平、Gleason评分、临床分期、病理分级、转移、总生存期及疾病的生化复发情况密切相关,与患者年龄无关。PAK2表达水平可以影响SOX2的表达水平,说明PAK2可能调节肿瘤细胞的干性来影响疾病进展,PAK2可以磷酸化激活TRIM28,活化的TRIM28可以增强SOX2启动子区的活性,使肿瘤细胞的细胞学行为更为活跃。
  • 加载中
  • 图 1  数据库ONCOMINE中PAK2在PCa及癌旁正常组织中的表达

    图 2  RT-qPCR实验结果

    图 3  Western Bolt实验结果

    图 4  IHC实验结果

    图 5  数据库TCGA分析PAK2的高低表达与DFS的关系

    图 6  GEPIA数据库进行预测TRIM28与PAK2在PCa中的相关性

    图 7  不稳定敲低PAK2的C4-2细胞系中PAK2表达水平对TRIM28磷酸化水平的影响

    图 8  在荧光素酶报告基因实验检测下C4-2 PCa细胞系在不同条件处理下的SOX2启动子区活性的差异情况

    表 1  140例PCa患者的主要临床病理特征信息与PAK2的表达水平之间的关系 

    临床特征 例数 PAK2表达 P
    低(87例) 高(53例)
    年龄/岁 0.637
       < 65 76 56 20
      ≥ 65 64 31 33
    PSA/(ng/mL) 0.049
       < 10 87 65 22
      ≥10 53 22 31
    Gleason评分 0.036
      ≤6 101 78 23
      >6 39 9 30
    临床分期 0.001
      ≤T2a 105 83 22
      >T2a 35 4 31
    病理分级 0.014
       < pT3a 106 80 26
      ≥pT3a 34 7 27
    是否转移 0.001
      否 122 84 38
      是 18 3 15
    总体生存 0.001
      存活 131 86 45
      死亡 9 1 8
    是否生化复发 0.002
      否 105 84 21
      是 35 3 32
    下载: 导出CSV
  • [1]

    Gooding AJ, Zhang B, Jahanbani FK, et al. The lncRNA BORG drives breast cancer metastasis and disease recurrence[J]. Sci Rep, 2017, 7: 12698. doi: 10.1038/s41598-017-12716-6

    [2]

    Addison JB, Koontz C, Fugett JH, et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells[J]. Cancer Res, 2015, 75(2): 344-355. doi: 10.1158/0008-5472.CAN-14-1561

    [3]

    Cheng CT, Kuo CY, Ouyang C, et al., Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells[J]. Cancer Res, 2016.76(17): 5006-5018. doi: 10.1158/0008-5472.CAN-15-2921

    [4]

    El-Aarag SA, Mahmoud A, Hashem MH, et al. In silico identification of potential key regulatory factors in smoking-induced lung cancer[J]. BMC Med Genomics, 2017, 10(1): 40. doi: 10.1186/s12920-017-0284-z

    [5]

    Fitzgerald S, Espina V, Liotta L, et al. Stromal TRIM28-associated signaling pathway modulation within the colorectal cancer microenvironment[J]. J Transl Med, 2018, 16(1): 89. doi: 10.1186/s12967-018-1465-z

    [6]

    Fitzgerald S, Sheehan KM, O'Grady A, et al. Relationship between epithelial and stromal TRIM28 expression predicts survival in colorectal cancer patients[J]. J Gastroenterol Hepatol, 2013, 28(6): 967-974. doi: 10.1111/jgh.12157

    [7]

    Wei CL, Cheng JL, Zhou B, et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein[J]. Sci Rep, 2016, 6: 29822. doi: 10.1038/srep29822

    [8]

    Grebeňová D, Holoubek A, Röselová P, et al. PAK1, PAK1Δ15, and PAK2: similarities, differences and mutual interactions[J]. Sci Rep, 2019, 9(1): 17171. doi: 10.1038/s41598-019-53665-6

    [9]

    Hao L, Leng J, Xiao RJ, et al. Bioinformatics analysis of the prognostic value of Tripartite Motif 28 in breast cancer[J]. Oncol Lett, 2017, 13(4): 2670-2678. doi: 10.3892/ol.2017.5764

    [10]

    Herquel B, Ouararhni K, Davidson I. The TIF1α-related TRIM cofactors couple chromatin modifications to transcriptional regulation, signaling and tumor suppression[J]. Transcription, 2011, 2(5): 231-236. doi: 10.4161/trns.2.5.17725

    [11]

    Herquel B, Ouararhni K, Khetchoumian K, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma[J]. Proc Natl Acad Sci U S A, 2011, 108(20): 8212-8217. doi: 10.1073/pnas.1101544108

    [12]

    Hu G, Kim J, Xu QK, et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal[J]. Genes Dev, 2009, 23(7): 837-848. doi: 10.1101/gad.1769609

    [13]

    Jov evska I, Zupanec N, Ko evar N, et al. TRIM28 and β-actin identified via nanobody-based reverse proteomics approach as possible human glioblastoma biomarkers[J]. PLoS One, 2014, 9(11): e113688. doi: 10.1371/journal.pone.0113688

    [14]

    Li JS, Lu D, Dou H, et al. Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway[J]. Nat Commun, 2018, 9(1): 143. doi: 10.1038/s41467-017-02413-3

    [15]

    Neo SH, Itahana Y, Alagu J, et al. TRIM28 is an E3 ligase for ARF-mediated NPM1/B23 SUMOylation that represses centrosome amplification[J]. Mol Cell Biol, 2015, 35(16): 2851-2863. doi: 10.1128/MCB.01064-14

    [16]

    Peng Y, Zhang MM, Jiang ZZ, et al. TRIM28 activates autophagy and promotes cell proliferation in glioblastoma[J]. Onco Targets Ther, 2019, 12: 397-404. doi: 10.2147/OTT.S188101

    [17]

    Qi ZX, Cai JJ, Chen LC, et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression[J]. J Neurooncol, 2016, 126(1): 19-26. doi: 10.1007/s11060-015-1897-8

    [18]

    Robbez-Masson L, Tie CHC, Conde L, et al. The HUSH complex cooperates with TRIM28 to repress young retrotransposons and new genes[J]. Genome Res, 2018, 28(6): 836-845. doi: 10.1101/gr.228171.117

    [19]

    Santos J, Gil J. TRIM28/KAP1 regulates senescence[J]. Immunol Lett, 2014, 162(1 Pt B): 281-289.

    [20]

    Satoh M, Chan JYF, Ross SJ, et al. Autoantibodies to transcription intermediary factor TIF1β associated with dermatomyositis[J]. Arthritis Res Ther, 2012, 14(2): R79. doi: 10.1186/ar3802

    [21]

    Song X, Guo CL, Zheng YT, et al. Post-transcriptional regulation of cancer/testis antigen MAGEC2 expression by TRIM28 in tumor cells[J]. BMC Cancer, 2018, 18(1): 1-10. doi: 10.1186/s12885-017-3892-2

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1488
  • PDF下载数:  752
  • 施引文献:  0
出版历程
收稿日期:  2023-07-12
刊出日期:  2023-10-06

目录