New progress of extrachromosomal circular DNA in the diagnosis and treatment of prostate cancer
-
摘要: 前列腺癌是西方国家中老年男性高发的一种恶性肿瘤。在中国,前列腺癌的患病率和发病率逐年上升,给社会带来了沉重的医疗负担。染色体外环状DNA(extrachromosomal circular DNA,eccDNA)被认为是前列腺癌的重要驱动因素,并与患者较差的预后相关。eccDNA不仅可以作为扩增癌基因的载体,还可以充当其他染色体外DNA或染色体上基因的增强子。本文综述了不同类型eccDNA的分子特征、功能和检测方法,并重点关注eccDNA在前列腺癌发生发展、肿瘤诊断和肿瘤耐药研究中的进展。此外,还讨论了eccDNA作为前列腺癌潜在诊断生物标志物和治疗靶点的作用。Abstract: Prostate cancer is a malignancy with a high incidence among middle-aged and elderly men in Western countries. In China, the escalating incidence and prevalence over the years have imposed a significant burden on the healthcare system and society. Extrachromosomal circular DNA (eccDNA) plays a critical role in prostate cancer and is associated with poorer patient prognosis. Not only does eccDNA serve as a vehicle for amplifying oncogenes, it also can act in trans as an enhancer for genes on other eccDNA or chromosomes. In this review, we provide a concise overview of the molecular characteristics, functions, and detection methods about eccDNA of different types, with a particular focus on the advancement of eccDNA in development and progression of prostate cancer, tumor diagnosis and tumor resistance research. This article also explores the role of eccDNA as a potential diagnostic biomarker and therapeutic target in prostate cancer.
-
Key words:
- prostate cancer /
- eccDNA /
- extrachromosomal DNA /
- oncogene amplification /
- tumor evolution
-
表 1 eccDNA的分类
名称 大小 常见位置 特点 功能 spcDNA 100 bp~10 kb 不稳定细胞 与重复染色体序列同源 启动或增强基因组不稳定性 t-circles 738 bp整数倍 只存在于ALT细胞 由端粒重复组成的双链或单链分子 参与ALT通路 microDNA 100~400 bp 肿瘤细胞 源自GC含量和外显子密度高的区域 肿瘤液体活检产生microRNA ecDNA 1~3 Mb 肿瘤细胞 无着丝粒,无端粒含有完整基因 促进癌基因扩增和癌细胞耐药性 表 2 不同eccDNA检测工具的比较
方法 技术 特点 ecSeg DAPI或FISH 使用U-net组合检测eccDNA和FISH探针信号检测环状DNA断点 Circle-Map WGS 精准对齐短剪接序列(>4 nts) AmpliconArchitect WGS 利用短读数据检测eccDNA上的扩增子成本低廉 Amplicon-Reconstructor OM数据结合WGS 断点检测分辨率高 Circle-finder ATAC-seq 检测肿瘤扩增前阶段eccDNA Circle-seq 环状DNA测序 有作为肿瘤诊断生物标志物的潜力高特异性的eccDNA富集测序eccDNA的全长读数 ecc_finder 环状DNA测序 用Nanopore读数检测源于重复基因座的eccDNA eccDNA-seq 环状DNA测序 捕获几千碱基大小的eccDNA scEC&T-seq 环状DNA测序 勘测eccDNA驱动的单细胞间遗传异质性 ecTag CRISPR-Cas和Casilio 实现活细胞中的eccDNA可视化 CRISPR-CATCH CRISPR-Cas 以碱基对分辨率富集分析兆碱基大小的eccDNA可以用于表观遗传分析只能富集包含已知序列的eccDNA -
[1] Ling X, Han Y, Meng J, et al. Small extrachromosomal circular DNA(eccDNA): major functions in evolution and cancer[J]. Mol Cancer, 2021, 20(1): 113. doi: 10.1186/s12943-021-01413-8
[2] Wang T, Zhang H, Zhou Y, et al. Extrachromosomal circular DNA: a new potential role in cancer progression[J]. J Transl Med, 2021, 19(1): 257. doi: 10.1186/s12967-021-02927-x
[3] Hotta Y, Bassel A. Molecular size and circularity of dna in cells of mammals and higher plants[J]. Proc Natl Acad Sci U S A, 1965, 53(2): 356-362. doi: 10.1073/pnas.53.2.356
[4] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. doi: 10.3322/caac.21590
[5] Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA cancer J Clin, 2023, 73(1): 17-48. doi: 10.3322/caac.21763
[6] Sartor O, de Bono JS. Metastatic Prostate Cancer[J]. N Engl J Med, 2018, 378(7): 645-657. doi: 10.1056/NEJMra1701695
[7] Liao Z, Jiang W, Ye L, et al. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA(ecDNA)in tumor heterogeneity and progression[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188392. doi: 10.1016/j.bbcan.2020.188392
[8] Dillon LW, Kumar P, Shibata Y, et al. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity[J]. Cell Rep, 2015, 11(11): 1749-1759. doi: 10.1016/j.celrep.2015.05.020
[9] Kumar P, Kiran S, Saha S, et al. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines[J]. Sci Adv, 2020, 6(20): eaba2489. doi: 10.1126/sciadv.aba2489
[10] Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules[J]. Mol Cell Biol, 1996, 16(5): 2002-2014. doi: 10.1128/MCB.16.5.2002
[11] Schmidt H, Taubert H, Lange H, et al. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes[J]. Oncol Rep, 2009, 22(2): 393-400.
[12] Cohen S, Regev A, Lavi S. Small polydispersed circular DNA(spcDNA)in human cells: association with genomic instability[J]. Oncogene, 1997, 14(8): 977-985. doi: 10.1038/sj.onc.1200917
[13] Tomaska L, Nosek J, Kramara J, et al. Telomeric circles: universal players in telomere maintenance?[J]. Nat Struct Mol Biol, 2009, 16(10): 1010-1015. doi: 10.1038/nsmb.1660
[14] Tomaska L, Nosek J, Makhov AM, et al. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance[J]. Nucleic Acids Res, 2000, 28(22): 4479-4487. doi: 10.1093/nar/28.22.4479
[15] Henson JD, Cao Y, Huschtscha LI, et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity[J]. Nat Biotechnol, 2009, 27(12): 1181-1185. doi: 10.1038/nbt.1587
[16] Shibata Y, Kumar P, Layer R, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues[J]. Science, 2012, 336(6077): 82-86. doi: 10.1126/science.1213307
[17] Paulsen T, Shibata Y, Kumar P, et al. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters[J]. Nucleic Acids Res, 2019, 47(9): 4586-4596. doi: 10.1093/nar/gkz155
[18] Tandon I, Pal R, Pal JK, et al. Extrachromosomal circular DNAs: an extra piece of evidence to depict tumor heterogeneity[J]. Future Sci OA, 2019, 5(6): FSO390. doi: 10.2144/fsoa-2019-0024
[19] Turner KM, Deshpande V, Beyter D, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity[J]. Nature, 2017, 543(7643): 122-125. doi: 10.1038/nature21356
[20] Verhaak R, Bafna V, Mischel PS. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution[J]. Nat Rev Cancer, 2019, 19(5): 283-288. doi: 10.1038/s41568-019-0128-6
[21] Kim H, Nguyen NP, Turner K, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers[J]. Nat Genet, 2020, 52(9): 891-897. doi: 10.1038/s41588-020-0678-2
[22] Wu S, Turner KM, Nguyen N, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression[J]. Nature, 2019, 575(7784): 699-703. doi: 10.1038/s41586-019-1763-5
[23] Xing J, Ning Q, Tang D, et al. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution[J]. Clin Genet, 2021, 99(4): 503-512. doi: 10.1111/cge.13896
[24] van Leen E, Brückner L, Henssen AG. The genomic and spatial mobility of extrachromosomal DNA and its implications for cancer therapy[J]. Nat Genet, 2022, 54(2): 107-114. doi: 10.1038/s41588-021-01000-z
[25] Zhu Y, Gujar AD, Wong CH, et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription[J]. Cancer Cell, 2021, 39(5): 694-707. e7. doi: 10.1016/j.ccell.2021.03.006
[26] Hung KL, Yost KE, Xie L, et al. ecDNA hubs drive cooperative intermolecular oncogene expression[J]. Nature, 2021, 600(7890): 731-736. doi: 10.1038/s41586-021-04116-8
[27] Rajkumar U, Turner K, Luebeck J, et al. EcSeg: Semantic Segmentation of Metaphase Images Containing Extrachromosomal DNA[J]. iScience, 2019, 21: 428-435. doi: 10.1016/j.isci.2019.10.035
[28] Luebeck J, Coruh C, Dehkordi SR, et al. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications[J]. Nat Commun, 2020, 11(1): 4374. doi: 10.1038/s41467-020-18099-z
[29] Møller HD. Circle-Seq: Isolation and Sequencing of Chromosome-Derived Circular DNA Elements in Cells[J]. Methods Mol Biol, 2020, 2119: 165-181.
[30] Yang F, Su W, Chung OW, et al. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis[J]. Nature, 2023, 620(7972): 218-225. doi: 10.1038/s41586-023-06327-7
[31] Chamorro González R, Conrad T, Stöber MC, et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells[J]. Nat Genet, 2023, 55(5): 880-890. doi: 10.1038/s41588-023-01386-y
[32] Jiang W, Zhao X, Gabrieli T, et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nat Commun, 2015, 6: 8101. doi: 10.1038/ncomms9101
[33] Hung KL, Luebeck J, Dehkordi SR, et al. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH[J]. Nat Genet, 2022, 54(11): 1746-1754. doi: 10.1038/s41588-022-01190-0
[34] Zivanovic A, Miller JT, Munro SA, et al. Co-evolution of AR gene copy number and structural complexity in endocrine therapy resistant prostate cancer[J]. NAR Cancer, 2023, 5(3): zcad045. doi: 10.1093/narcan/zcad045
[35] Chen W, Weng Z, Xie Z, et al. Sequencing of methylase-accessible regions in integral circular extrachromosomal DNA reveals differences in chromatin structure[J]. Epigenetics Chromatin, 2021, 14(1): 40. doi: 10.1186/s13072-021-00416-5
[36] Qiu X, Boufaied N, Hallal T, et al. MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets[J]. Nat Commun, 2022, 13(1): 2559. doi: 10.1038/s41467-022-30257-z
[37] Koche RP, Rodriguez-Fos E, Helmsauer K, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma[J]. Nat Genet, 2020, 52(1): 29-34. doi: 10.1038/s41588-019-0547-z
[38] Song P, Wu LR, Yan YH, et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics[J]. Nat Biomed Eng, 2022, 6(3): 232-245. doi: 10.1038/s41551-021-00837-3
[39] Sin ST, Deng J, Ji L, et al. Effects of nucleases on cell-free extrachromosomal circular DNA[J]. JCI Insight, 2022, 7(8): e156070. doi: 10.1172/jci.insight.156070
[40] Sin S, Jiang P, Deng J, et al. Identification and characterization of extrachromosomal circular DNA in maternal plasma[J]. Proc Natl Acad Sci U S A, 2020, 117(3): 1658-1665. doi: 10.1073/pnas.1914949117
[41] Kumar P, Dillon LW, Shibata Y, et al. Normal and Cancerous Tissues Release Extrachromosomal Circular DNA(eccDNA)into the Circulation[J]. Mol Cancer Res, 2017, 15(9): 1197-1205. doi: 10.1158/1541-7786.MCR-17-0095
[42] Zhu J, Chen S, Zhang F, et al. Cell-Free eccDNAs: A New Type of Nucleic Acid Component for Liquid Biopsy?[J]. Mol Diagn Ther, 2018, 22(5): 515-522. doi: 10.1007/s40291-018-0348-6
[43] Luo X, Zhang L, Cui J, et al. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring[J]. Clin Transl Med, 2023, 13(9): e1393. doi: 10.1002/ctm2.1393
[44] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nat Rev Clin Oncol, 2018, 15(2): 81-94. doi: 10.1038/nrclinonc.2017.166
[45] Xue Y, Martelotto L, Baslan T, et al. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer[J]. Nat Med, 2017, 23(8): 929-937. doi: 10.1038/nm.4369
[46] Song K, Minami JK, Huang A, et al. Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges[J]. Cancer Discov, 2022, 12(4): 1046-1069. doi: 10.1158/2159-8290.CD-20-0936
[47] Lange JT, Chen CY, Pichugin Y, et al. Principles of ecDNA random inheritance drive rapid genome change and therapy resistance in human cancers[J]. Bio Rxiv, 2021.
[48] Clarke TL, Tang R, Chakraborty D, et al. Histone Lysine Methylation Dynamics Control EGFR DNA Copy-Number Amplification[J]. Cancer Discov, 2020, 10(2): 306-325. doi: 10.1158/2159-8290.CD-19-0463
[49] Johnson KC, Anderson KJ, Courtois ET, et al. Single-cell multimodal glioma analyses identify epigenetic regulators of cellular plasticity and environmental stress response[J]. Nat Genet, 2021, 53(10): 1456-1468. doi: 10.1038/s41588-021-00926-8
[50] Nathanson DA, Gini B, Mottahedeh J, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA[J]. Science, 2014, 343(6166): 72-76.
[51] Haber DA, Schimke RT. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes[J]. Cell, 1981, 26(3 Pt 1): 355-362.
[52] Cai M, Zhang H, Hou L, et al. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells[J]. Int J Cancer, 2019, 144(5): 1037-1048. doi: 10.1002/ijc.31781
[53] Tyler LC, Le AT, Chen N, et al. MET gene amplification is a mechanism of resistance to entrectinib in ROS1+NSCLC[J]. Thorac Cancer, 2022, 13(21): 3032-3041. doi: 10.1111/1759-7714.14656
[54] Lin C, Chen Y, Zhang F, et al. Encoding gene RAB3B exists in linear chromosomal and circular extrachromosomal DNA and contributes to cisplatin resistance of hypopharyngeal squamous cell carcinoma via inducing autophagy[J]. Cell Death Dis, 2022, 13(2): 171. doi: 10.1038/s41419-022-04627-w
[55] Zhu Y, Gong L, Wei CL. Guilt by association: EcDNA as a mobile transactivator in cancer[J]. Trends Cancer, 2022, 8(9): 747-758. doi: 10.1016/j.trecan.2022.04.011
[56] Lv W, Pan X, Han P, et al. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs[J]. Clin Transl Med, 2022, 12(4): e817. doi: 10.1002/ctm2.817
[57] Szczesny RJ, Wojcik MA, Borowski LS, et al. Yeast and human mitochondrial helicases[J]. Biochim Biophys Acta, 2013, 1829(8): 842-853. doi: 10.1016/j.bbagrm.2013.02.009
[58] Shoshani O, Brunner SF, Yaeger R, et al. Chromothripsis drives the evolution of gene amplification in cancer[J]. Nature, 2021, 591(7848): 137-141. doi: 10.1038/s41586-020-03064-z
[59] Yi E, Gujar AD, Guthrie M, et al. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer[J]. Cancer Discov, 2022, 12(2): 468-483. doi: 10.1158/2159-8290.CD-21-1376