前列腺癌合并盆腔淋巴结转移的预测模型的研究进展

侯迅, 曹晓明. 前列腺癌合并盆腔淋巴结转移的预测模型的研究进展[J]. 临床泌尿外科杂志, 2024, 39(4): 358-362. doi: 10.13201/j.issn.1001-1420.2024.04.019
引用本文: 侯迅, 曹晓明. 前列腺癌合并盆腔淋巴结转移的预测模型的研究进展[J]. 临床泌尿外科杂志, 2024, 39(4): 358-362. doi: 10.13201/j.issn.1001-1420.2024.04.019
HOU Xun, CAO Xiaoming. Progress in predictive models of prostate cancer with pelvic lymph node metastasis[J]. J Clin Urol, 2024, 39(4): 358-362. doi: 10.13201/j.issn.1001-1420.2024.04.019
Citation: HOU Xun, CAO Xiaoming. Progress in predictive models of prostate cancer with pelvic lymph node metastasis[J]. J Clin Urol, 2024, 39(4): 358-362. doi: 10.13201/j.issn.1001-1420.2024.04.019

前列腺癌合并盆腔淋巴结转移的预测模型的研究进展

详细信息
    通讯作者: 曹晓明, E-mail: drcxm@126.com
  • 中图分类号: R737.25

Progress in predictive models of prostate cancer with pelvic lymph node metastasis

More Information
  • 盆腔淋巴结转移是影响前列腺癌(prostate cancer,PCa)患者治疗决策改变和不良预后的重要因素,但目前传统影像学检查对于淋巴结转移的检出率非常有限。一些新的预测模式如基于传统影像学和临床特征的预测模型、基于基因特征的风险评分、血液学参数以及新型影像学方法如前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)配体PET显像是更具有潜力的预测因素,目前正被广泛研究并应用于临床,本文就PCa淋巴结转移预测手段的进展进行综述。
  • 加载中
  • [1]

    Zhou JW, Mao YH, Liu Y, et al. A novel robust nomogram based on peripheral monocyte counts for predicting lymph node metastasis of prostate cancer[J]. Asian J Androl, 2021, 23(4): 409-414. doi: 10.4103/aja.aja_89_20

    [2]

    Franklin A, Yaxley WJ, Raveenthiran S, et al. Histological comparison between predictive value of preoperative 3-T multiparametric MRI and 68Ga-PSMA PET/CT scan for pathological outcomes at radical prostatectomy and pelvic lymph node dissection for prostate cancer[J]. BJU Int, 2021, 127(1): 71-79. doi: 10.1111/bju.15134

    [3]

    Meijer D, van Leeuwen PJ, Roberts MJ, et al. External validation and addition of prostate-specific membrane antigen positron emission tomography to the most frequently used nomograms for the prediction of pelvic lymph-node metastases: an international multicenter study[J]. Eur Urol, 2021, 80(2): 234-242. doi: 10.1016/j.eururo.2021.05.006

    [4]

    Chalouhy C, Gurram S, Ghavamian R. Current controversies on the role of lymphadenectomy for prostate cancer[J]. Urol Oncol, 2019, 37(3): 219-226. doi: 10.1016/j.urolonc.2018.11.020

    [5]

    Fossati N, Willemse PM, van den Broeck T, et al. The benefits and harms of different extents of lymph node dissection during radical prostatectomy for prostate cancer: a systematic review[J]. Eur Urol, 2017, 72(1): 84-109. doi: 10.1016/j.eururo.2016.12.003

    [6]

    Merhe A, Labban M, Hout M, et al. Development of a novel nomogram incorporating platelet-to-lymphocyte ratio for the prediction of lymph node involvement in prostate carcinoma[J]. Urol Oncol, 2020, 38(12): 930.e1-930.e6. doi: 10.1016/j.urolonc.2020.05.026

    [7]

    Van Poppel H, Roobol MJ, Chapple CR, et al. Prostate-specific antigen testing as part of a risk-adapted early detection strategy for prostate cancer: European association of urology position and recommendations for 2021[J]. Eur Urol, 2021, 80(6): 703-711. doi: 10.1016/j.eururo.2021.07.024

    [8]

    Mottet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2017, 71(4): 618-629. doi: 10.1016/j.eururo.2016.08.003

    [9]

    Thoeny HC, Barbieri S, Froehlich JM, et al. Functional and targeted lymph node imaging in prostate cancer: current status and future challenges[J]. Radiology, 2017, 285(3): 728-743. doi: 10.1148/radiol.2017161517

    [10]

    Brembilla G, Dell'Oglio P, Stabile A, et al. Preoperative multiparametric MRI of the prostate for the prediction of lymph node metastases in prostate cancer patients treated with extended pelvic lymph node dissection[J]. Eur Radiol, 2018, 28(5): 1969-1976. doi: 10.1007/s00330-017-5229-6

    [11]

    Hövels AM, Heesakkers RA, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis[J]. Clin Radiol, 2008, 63(4): 387-395. doi: 10.1016/j.crad.2007.05.022

    [12]

    Gandaglia G, Ploussard G, Valerio M, et al. A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies[J]. Eur Urol, 2019, 75(3): 506-514. doi: 10.1016/j.eururo.2018.10.012

    [13]

    Kawase M, Ebara S, Tatenuma T, et al. A nomogram for predicting prostate cancer with lymph node involvement in robot-assisted radical prostatectomy era: a retrospective multicenter cohort study in Japan(the MSUG94 group)[J]. Diagnostics, 2022, 12(10): 2545. doi: 10.3390/diagnostics12102545

    [14]

    Diamand R, Oderda M, Al Hajj Obeid W, et al. A multicentric study on accurate grading of prostate cancer with systematic and MRI/US fusion targeted biopsies: comparison with final histopathology after radical prostatectomy[J]. World J Urol, 2019, 37(10): 2109-2117. doi: 10.1007/s00345-019-02634-9

    [15]

    Di Pierro GB, Salciccia S, Frisenda M, et al. Comparison of four validated nomograms(memorial Sloan Kettering cancer center, briganti 2012, 2017, and 2019) predicting lymph node invasion in patients with high-risk prostate cancer candidates for radical prostatectomy and extended pelvic lymph node dissection: clinical experience and review of the literature[J]. Cancers, 2023, 15(6): 1683. doi: 10.3390/cancers15061683

    [16]

    Diamand R, Oderda M, Albisinni S, et al. External validation of the Briganti nomogram predicting lymph node invasion in patients with intermediate and high-risk prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies: a European multicenter study[J]. Urol Oncol, 2020, 38(11): 847.e9-847.e16. doi: 10.1016/j.urolonc.2020.04.011

    [17]

    Cooperberg MR, Erho N, Chan JM, et al. The diverse genomic landscape of clinically low-risk prostate cancer[J]. Eur Urol, 2018, 74(4): 444-452. doi: 10.1016/j.eururo.2018.05.014

    [18]

    Lu X, Pan XL, Wu CJ, et al. An in vivo screen identifies PYGO2 as a driver for metastatic prostate cancer[J]. Cancer Res, 2018, 78(14): 3823-3833. doi: 10.1158/0008-5472.CAN-17-3564

    [19]

    Cao HM, Wan Z, Wu Y, et al. Development and internal validation of a novel model and markers to identify the candidates for lymph node metastasis in patients with prostate cancer[J]. Medicine(Baltimore), 2019, 98(30): e16534.

    [20]

    Wellenstein MD, Coffelt SB, Duits DEM, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis[J]. Nature, 2019, 572(7770): 538-542. doi: 10.1038/s41586-019-1450-6

    [21]

    Qian BZ. Inflammation fires up cancer metastasis[J]. Semin Cancer Biol, 2017, 47: 170-176. doi: 10.1016/j.semcancer.2017.08.006

    [22]

    Zhou JW, Mao YH, Liu Y, et al. A novel robust nomogram based on peripheral monocyte counts for predicting lymph node metastasis of prostate cancer[J]. Asian J Androl, 2021, 23(4): 409-414. doi: 10.4103/aja.aja_89_20

    [23]

    Porcaro AB, Tafuri A, Sebben M, et al. Positive association between basal total testosterone circulating levels and tumor grade groups at the time of diagnosis of prostate cancer[J]. Urol Int, 2019, 103(4): 400-407. doi: 10.1159/000500960

    [24]

    Porcaro AB, Tafuri A, Panunzio A, et al. Endogenous testosterone density is an independent predictor of pelvic lymph node invasion in high-risk prostate cancer: results in 201 consecutive patients treated with radical prostatectomy and extended pelvic lymph node dissection[J]. Int Urol Nephrol, 2022, 54(3): 541-550. doi: 10.1007/s11255-022-03103-w

    [25]

    Zattoni F, Artioli P, Burei M, et al. Detection rate of 18F-Choline positron emission tomography/computed tomography in patients with non-metastatic hormone sensitive and castrate resistant prostate cancer[J]. Q J Nucl Med Mol Imaging, 2023, 67(2): 167-173.

    [26]

    Hawkey NM, Sartor AO, Morris MJ, et al. Prostate-specific membrane antigen-targeted theranostics: past, present, and future approaches[J]. Clin Adv Hematol Oncol, 2022, 20(4): 227-238.

    [27]

    Sonni I, Felker ER, Lenis AT, et al. Head-to-head comparison of 68Ga-PSMA-11 PET/CT and mpMRI with a histopathology gold standard in the detection, intraprostatic localization, and determination of local extension of primary prostate cancer: results from a prospective single-center imaging trial[J]. J Nucl Med, 2022, 63(6): 847-854. doi: 10.2967/jnumed.121.262398

    [28]

    Yaxley JW, Raveenthiran S, Nouhaud FX, et al. Outcomes of primary lymph node staging of intermediate and high risk prostate cancer with 68Ga-PSMA positron emission tomography/computerized tomography compared to histological correlation of pelvic lymph node pathology[J]. J Urol, 2019, 201(4): 815-820. doi: 10.1097/JU.0000000000000053

    [29]

    Carvalho J, Nunes P, Da Silva ET, et al. [68Ga]Ga-PSMA-11 PET-CT: local preliminary experience in prostate cancer biochemical recurrence patients[J]. Arch Ital Urol Androl, 2021, 93(1): 21-25. doi: 10.4081/aiua.2021.1.21

    [30]

    Hope TA, Eiber M, Armstrong WR, et al. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial[J]. JAMA Oncol, 2021, 7(11): 1635-1642. doi: 10.1001/jamaoncol.2021.3771

    [31]

    Sprute K, Kramer V, Koerber SA, et al. Diagnostic accuracy of 18F-PSMA-1007 PET/CT imaging for lymph node staging of prostate carcinoma in primary and biochemical recurrence[J]. J Nucl Med, 2021, 62(2): 208-213. doi: 10.2967/jnumed.120.246363

    [32]

    Soergel P, Kirschke J, Klapdor R, et al. Sentinel lymphadenectomy in cervical cancer using near infrared fluorescence from indocyanine green combined with technetium-99 m-nanocolloid[J]. Lasers Surg Med, 2018, 50(10): 994-1001. doi: 10.1002/lsm.22999

    [33]

    Quak E, Lasne Cardon A, Ciappuccini R, et al. Upfront F18-choline PET/CT versus Tc99m-sestaMIBI SPECT/CT guided surgery in primary hyperparathyroidism: the randomized phase Ⅲ diagnostic trial APACH2[J]. BMC Endocr Disord, 2021, 21(1): 3. doi: 10.1186/s12902-020-00667-5

    [34]

    Kularatne SA, Thomas M, Myers CH, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer[J]. Clin Cancer Res, 2019, 25(1): 177-187. doi: 10.1158/1078-0432.CCR-18-0803

    [35]

    Stibbe JA, de Barros HA, Linders DGJ, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial[J]. Lancet Oncol, 2023, 24(5): 457-467. doi: 10.1016/S1470-2045(23)00102-X

    [36]

    Wu LL, Zhao QX, Wang QH, et al. Membrane dual-targeting probes: a promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection[J]. Acta Pharm Sin B, 2023, 13(3): 1204-1215. doi: 10.1016/j.apsb.2022.07.018

    [37]

    Dell'Oglio P, Meershoek P, Maurer T, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy[J]. Eur Urol, 2021, 79(1): 124-132. doi: 10.1016/j.eururo.2020.10.031

    [38]

    Yılmaz B, Şahin S, Ergül N, et al. 99 mTc-PSMA targeted robot-assisted radioguided surgery during radical prostatectomy and extended lymph node dissection of prostate cancer patients[J]. Ann Nucl Med, 2022, 36(7): 597-609. doi: 10.1007/s12149-022-01741-9

  • 加载中
计量
  • 文章访问数:  486
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2023-07-04
刊出日期:  2024-04-06

目录