利用定量蛋白质组学分析鉴定醛固酮腺瘤中新型生物标志物和通路

陈亮, 向婉, 代喆, 等. 利用定量蛋白质组学分析鉴定醛固酮腺瘤中新型生物标志物和通路[J]. 临床泌尿外科杂志, 2024, 39(5): 388-395. doi: 10.13201/j.issn.1001-1420.2024.05.004
引用本文: 陈亮, 向婉, 代喆, 等. 利用定量蛋白质组学分析鉴定醛固酮腺瘤中新型生物标志物和通路[J]. 临床泌尿外科杂志, 2024, 39(5): 388-395. doi: 10.13201/j.issn.1001-1420.2024.05.004
CHEN Liang, XIANG Wan, DAI Zhe, et al. Discovery of novel biomarkers and pathways in aldosterone-producing adenomas through label-free quantitative proteomics analysis[J]. J Clin Urol, 2024, 39(5): 388-395. doi: 10.13201/j.issn.1001-1420.2024.05.004
Citation: CHEN Liang, XIANG Wan, DAI Zhe, et al. Discovery of novel biomarkers and pathways in aldosterone-producing adenomas through label-free quantitative proteomics analysis[J]. J Clin Urol, 2024, 39(5): 388-395. doi: 10.13201/j.issn.1001-1420.2024.05.004

利用定量蛋白质组学分析鉴定醛固酮腺瘤中新型生物标志物和通路

  • 基金项目:
    武汉大学中南医院青年交叉学科专项基金资助项目(No:ZNQNJC2023012)
详细信息

Discovery of novel biomarkers and pathways in aldosterone-producing adenomas through label-free quantitative proteomics analysis

More Information
  • 目的 本研究旨在通过对接受肾上腺切除术的患者采集的醛固酮腺瘤(aldosterone-producing adenoma,APA)组织进行无标记定量蛋白质组学分析,筛选APA组织和正常肾上腺组织之间差异表达的蛋白。方法 利用无标记定量蛋白质组学技术对APA及正常肾上腺组织进行分析,筛选APA组织和正常肾上腺组织之间差异表达的蛋白。采用免疫组化染色对APA病人组织样本染色,验证差异表达蛋白的表达。结果 共鉴定了6 282种蛋白质。使用P < 0.05和|fold change|≥2的显著性截断值,鉴定出356种差异表达蛋白(differentially expressed proteins,DEPs)。此外,通过整合蛋白质组和转录组数据,鉴定出一个新的生物标志物嗜铬蛋白B(chromogranin B,CHGB),在APA中显著表达下调,并进一步通过免疫组化染色得到了进一步验证。受试者工作特征(receiver operating characteristic,ROC)曲线分析显示,CHGB在区分正常组织和APA方面具有较高的特异性(AUC=0.856),显示其在APA发展中的潜在重要性。重要的是,CHGB和CYP11B2的联合提高了诊断APA的预测效能。结论 我们的研究确定了参与APA发生的关键蛋白质和通路,并发现了一种新的蛋白质生物标志物来区分APA,可能成为预测APA的潜在生物标记物。这些发现为未来APA的分子诊断研究提供了理论依据。
  • 加载中
  • 图 1  APA和正常肾上腺组织样本的蛋白质组学分析

    图 2  APA组织中DEPs及其功能注释

    图 3  GSE8514、GSE60042和APA蛋白质组学中共同的DEPs的Venn图

    图 4  APA中关键蛋白质的鉴定

    图 5  APA关键蛋白质的免疫组织化学验证

    图 6  CHGB表达与CYP11B2呈负相关

    表 1  12例APA患者的临床资料

    序号 分组 性别 年龄/岁 BMI/(kg/m2) K+/(mmol/L) 醛固酮/(ng/dL) PRA/(ng/mL/h) ARR 部位
    1 APA1/normal1 56 20.45 3.63 15.96 0.38 42
    2 41 22.00 3.78 24.52 0.42 58
    3 44 23.00 3.39 38.98 0.13 300
    4 47 19.14 2.50 61.93 0.65 95
    5 APA2/normal2 45 17.97 2.84 16.64 0.04 416
    6 54 25.06 3.76 18.03 0.47 38
    7 56 24.22 3.66 254.94 0.09 2 833
    8 61 24.22 2.72 41.21 0.07 589
    9 APA3/normal3 48 25.61 3.43 16.21 0.02 811
    10 60 25.00 3.09 70.30 0.05 1 406
    11 30 19.00 2.85 61.74 0.17 363
    12 59 21.95 2.61 25.68 0.38 68
    下载: 导出CSV
  • [1]

    Zavatta G, Di Dalmazi G, Pizzi C, et al. Larger ascending aorta in primary aldosteronism: a 3-year prospective evaluation of adrenalectomy vs. medical treatment[J]. Endocrine, 2019, 63(3): 470-475. doi: 10.1007/s12020-018-1801-3

    [2]

    Hundemer GL, Curhan GC, Yozamp N, et al. Renal Outcomes in Medically and Surgically Treated Primary Aldosteronism[J]. Hypertension, 2018, 72(3): 658-666. doi: 10.1161/HYPERTENSIONAHA.118.11568

    [3]

    Williams TA, Reincke M. Pathophysiology and histopathology of primary aldosteronism[J]. Trends Endocrinol Metab, 2022, 33(1): 36-49. doi: 10.1016/j.tem.2021.10.002

    [4]

    Zennaro MC, Boulkroun S, Fernandes-Rosa FL. Pathogenesis and treatment of primary aldosteronism[J]. Nat Rev Endocrinol, 2020, 16(10): 578-589. doi: 10.1038/s41574-020-0382-4

    [5]

    Xie J, Zhang C, Wang X, et al. Exploration of KCNJ5 Somatic Mutation and CYP11B1/CYP11B2 Staining in Multiple Nodules in Primary Aldosteronism[J]. Front Med(Lausanne), 2022, 9: 823065.

    [6]

    Nanba K, Baker JE, Blinder AR, et al. Histopathology and Genetic Causes of Primary Aldosteronism in Young Adults[J]. J Clin Endocrinol Metab, 2022, 107(9): 2473-2482. doi: 10.1210/clinem/dgac408

    [7]

    Gioco F, Seccia TM, Gomez-Sanchez EP, et al. Adrenal histopathology in primary aldosteronism: is it time for a change?[J]. Hypertension, 2015, 66(4): 724-730. doi: 10.1161/HYPERTENSIONAHA.115.05873

    [8]

    Nam AS, Chaligne R, Landau DA. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics[J]. Nat Rev Genet, 2021, 22(1): 3-18.

    [9]

    McGuire AL, Gabriel S, Tishkoff SA, et al. The road ahead in genetics and genomics[J]. Nat Rev Genet, 2020, 21(10): 581-596. doi: 10.1038/s41576-020-0272-6

    [10]

    Pan Y, Lei X, Zhang Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: A comprehensive approach[J]. Med Res Rev, 2022, 42(1): 441-461. doi: 10.1002/med.21847

    [11]

    Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J]. Innovation(Camb), 2021, 2(3): 100141.

    [12]

    Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data[J]. Protein Sci, 2022, 31(1): 47-53. doi: 10.1002/pro.4172

    [13]

    Park KS, Kim SH, Oh JH, et al. Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning[J]. Brief Bioinform, 2021, 22(4): bbaa336. doi: 10.1093/bib/bbaa336

    [14]

    唐俊, 彭宏伟, 代喆, 等. VHL综合征家系合并VHL基因和TP53基因突变的临床表型及基因突变分析研究[J]. 临床泌尿外科杂志, 2023, 38(11): 815-821. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2023.11.003

    [15]

    常智, 尚吉文, 任瑞民, 等. KCNJ5突变与单侧原发性醛固酮增多症术后临床缓解的相关性研究[J]. 临床泌尿外科杂志, 2023, 38(7): 519-524. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2023.07.008

    [16]

    Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research[J]. Clin Proteomics, 2020, 17: 17. doi: 10.1186/s12014-020-09283-w

    [17]

    Buzdin A, Sorokin M, Garazha A, et al. RNA sequencing for research and diagnostics in clinical oncology[J]. Semin Cancer Biol, 2020, 60: 311-323. doi: 10.1016/j.semcancer.2019.07.010

    [18]

    Fedosova NU, Habeck M, Nissen P. Structure and Function of Na, K-ATPase-The Sodium-Potassium Pump[J]. Compr Physiol, 2021, 12(1): 2659-2679.

    [19]

    Scholl UI. Genetics of Primary Aldosteronism[J]. Hypertension, 2022, 79(5): 887-897. doi: 10.1161/HYPERTENSIONAHA.121.16498

    [20]

    Yoshida Y, Shibata H. Recent progress in the diagnosis and treatment of primary aldosteronism[J]. Hypertens Res, 2023, 46(7): 1738-1744. doi: 10.1038/s41440-023-01288-w

    [21]

    Pitsava G, Faucz FR, Stratakis CA, et al. Update on the Genetics of Primary Aldosteronism and Aldosterone-Producing Adenomas[J]. Curr Cardiol Rep, 2022, 24(9): 1189-1195. doi: 10.1007/s11886-022-01735-z

    [22]

    Yadav GP, Wang H, Ouwendijk J, et al. Chromogranin B(CHGB)is dimorphic and responsible for dominant anion channels delivered to cell surface via regulated secretion[J]. Front Mol Neurosci, 2023, 16: 1205516. doi: 10.3389/fnmol.2023.1205516

    [23]

    Watanabe T. The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease[J]. Int J Mol Sci, 2021, 22(11): 6118. doi: 10.3390/ijms22116118

    [24]

    Miki M, Ito T, Hijioka M, et al. Utility of chromogranin B compared with chromogranin A as a biomarker in Japanese patients with pancreatic neuroendocrine tumors[J]. Jpn J Clin Oncol, 2017, 47(6): 520-528.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1438
  • PDF下载数:  354
  • 施引文献:  0
出版历程
收稿日期:  2023-07-07
刊出日期:  2024-05-06

目录