-
摘要: 前列腺癌(prostate cancer,PCa)是男性常见的恶性肿瘤之一,其筛查和临床诊断主要依赖血清前列腺特异性抗原(prostate-specific antigen,PSA)、多参数磁共振成像(multiparametric magnetic resonance imaging,mpMRI)和经直肠超声检查(transrectal ultrasonography,TRUS)等。前列腺根据其组织学特征被划分为3个腺性区域,即外周带、移行带和中央带,每个区域PCa的发生率和预后存在差异。分子生物学可以帮助人们更好地理解PCa发生发展的分子特征,特别是各个区域独特的基因组学和蛋白组学特征。基于PCa的空间分布的研究,开展病灶特异性的局灶治疗或局部治疗,有效控制肿瘤进展,有助于保障患者的生活质量。近年来,人工智能技术在PCa的诊断与治疗方面展现出潜在的应用价值,有望提高空间分布诊断的准确率,辅助治疗决策,但需要在实践中验证其可靠性。Abstract: Prostate cancer (PCa) is one of the most common malignant tumors in men, and the clinical diagnosis and screening of PCa mainly rely on serum prostate-specific antigen (PSA), multiparametric magnetic resonance imaging (mpMRI), and transrectal ultrasonography (TRUS) for prostate examination. The human prostate is divided into three zones based on its histological characteristics: peripheral zone, transition zone, and central zone. The incidence, prognosis, and clinical outcomes of PCa vary in each zone. Molecular biology research can help better understand the unique molecular, genomic, and zonal cellular characteristics of tumor progression and invasive differences. Local treatments targeting the spatial distribution of specific PCa can effectively control tumor progression, ensuring patients' quality of life. In recent years, artificial intelligence technology has shown potential application value in the diagnosis and treatment of PCa, aiming to improve diagnostic accuracy and precision, but further research and validation are needed to determine its effectiveness and reliability.
-
Key words:
- prostate cancer /
- spatial distribution /
- peripheral zone /
- transitional zone /
- central zone
-
-
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834
[2] Hu MJ, Li MD, Lin YD, et al. Age-specific incidence trends of 32 cancers in China, 1983 to 2032: Evidence from Cancer Incidence in Five Continents[J]. Int J Cancer, 2024.
[3] Pitzen SP, Dehm SM. Basal epithelial cells in prostate development, tumorigenesis, and cancer progression[J]. Cell Cycle, 2023, 22(11): 1303-1318. doi: 10.1080/15384101.2023.2206502
[4] Toivanen R, Shen MM. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification[J]. Development, 2017, 144(8): 1382-1398. doi: 10.1242/dev.148270
[5] Grossmann S, Hooks Y, Wilson L, et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations[J]. Cell Stem Cell, 2021, 28(7): 1262-1274. e5. doi: 10.1016/j.stem.2021.02.005
[6] McNeal JE. Regional morphology and pathology of the prostate[J]. Am J Clin Pathol, 1968, 49(3): 347-357. doi: 10.1093/ajcp/49.3.347
[7] Vargas HA, Akin O, Franiel T, et al. Normal central zone of the prostate and central zone involvement by prostate cancer: clinical and MR imaging implications[J]. Radiology, 2012, 262(3): 894-902. doi: 10.1148/radiol.11110663
[8] Sato S, Kimura T, Onuma H, et al. Transition zone prostate cancer is associated with better clinical outcomes than peripheral zone cancer[J]. BJUI Compass, 2021, 2(3): 169-177. doi: 10.1002/bco2.47
[9] Jameel M, Fatma H, Nadtochii LA, et al. Molecular insight into prostate cancer: preventive role of selective bioactive molecules[J]. Life(Basel), 2023, 13(10): 1976.
[10] Militaru FC, Militaru V, Crisan N, et al. Molecular basis and therapeutic targets in prostate cancer: a comprehensive review[J]. Biomol Biomed, 2023, 23(5): 760-771.
[11] Karthaus WR, Hofree M, Choi D, et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis[J]. Science, 2020, 368(6490): 497-505. doi: 10.1126/science.aay0267
[12] Yan QX, Wang M, Xia HR, et al. Single-cell RNA-sequencing technology demonstrates the heterogeneity between aged prostate peripheral and transitional zone[J]. Clin Transl Med, 2022, 12(10): e1084. doi: 10.1002/ctm2.1084
[13] He WH, Kang YB, Zhu W, et al. FOXF2 acts as a crucial molecule in tumours and embryonic development[J]. Cell Death Dis, 2020, 11(6): 424. doi: 10.1038/s41419-020-2604-z
[14] Al Kadhi O, Traka MH, Melchini A, et al. Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer[J]. Oncotarget, 2017, 8(49): 84902-84916. doi: 10.18632/oncotarget.17926
[15] Samaratunga H, Egevad L, Yaxley JW, et al. Clinicopathologic significance of anterior prostate cancer: comparison with posterior prostate cancer in the era of multiparametric magnetic resonance imaging[J]. Am J Surg Pathol, 2023, 47(6): 701-708. doi: 10.1097/PAS.0000000000002042
[16] Falzarano SM, Nyame YA, McKenney JK, et al. Clinicopathologic features and outcomes of anterior-dominant prostate cancer: implications for diagnosis and treatment[J]. Prostate Cancer Prostatic Dis, 2020, 23(3): 435-440. doi: 10.1038/s41391-019-0199-1
[17] Zhan YQ, Shen DG, Zeng JC, et al. Targeted prostate biopsy using statistical image analysis[J]. IEEE Trans Med Imaging, 2007, 26(6): 779-788. doi: 10.1109/TMI.2006.891497
[18] Nagpal K, Foote D, Liu Y, et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer[J]. NPJ Digit Med, 2019, 2: 48. doi: 10.1038/s41746-019-0112-2
[19] Liu YY, Wang S, Xu G, et al. Effectiveness and accuracy of MRI-ultrasound fusion targeted biopsy based on PI-RADS v2.1 category in transition/peripheral zone of the prostate[J]. J Magn Reson Imaging, 2023, 58(3): 709-717. doi: 10.1002/jmri.28614
[20] Yang CG, Li BS, Luan Y, et al. Deep learning model for the detection of prostate cancer and classification of clinically significant disease using multiparametric MRI in comparison to PI-RADs score[J]. Urol Oncol, 2024, 42(5): 158. e17-158. e27. doi: 10.1016/j.urolonc.2024.01.021
[21] Deivasigamani S, Kotamarti S, Rastinehad AR, et al. Primary whole-gland ablation for the treatment of clinically localized prostate cancer: a focal therapy society best practice statement[J]. Eur Urol, 2023, 84(6): 547-560. doi: 10.1016/j.eururo.2023.06.013
[22] Villers A, Seguier D, Puech P, et al. Robot partial prostatectomy for anterior cancer: long-term functional and oncological outcomes at 7 years[J]. Eur Urol Open Sci, 2023, 55: 11-14. doi: 10.1016/j.euros.2023.07.001
[23] Jiang XK, Chen MZ, Tian J, et al. Comparison of regional saturation biopsy, targeted biopsy, and systematic biopsy in patients with prostate-specific antigen levels of 4-20 ng/ml: a prospective, single-center, randomized controlled trial[J]. Eur Urol Oncol, 2023: S2588-S9311(23)00283-3.
[24] Zeng N, Sun JX, Liu CQ, et al. Knowledge mapping of application of image-guided surgery in prostate cancer: a bibliometric analysis(2013-2023)[J]. Int J Surg, 2024, 110(5): 2992-3007. doi: 10.1097/JS9.0000000000001232
[25] Baba H, Sakamoto S, Zhao X, et al. Tumor location and a tumor volume over 2.8 cc predict the prognosis for Japanese localized prostate cancer[J]. Cancers(Basel), 2022, 14(23): 5823.
[26] Cohen RJ, Shannon BA, Phillips M, et al. Central zone carcinoma of the prostate gland: a distinct tumor type with poor prognostic features[J]. J Urol, 2008, 179(5): 1762-1767. doi: 10.1016/j.juro.2008.01.017
[27] Ali AM, Du Feu A, Oliveira P, et al. Prostate zones and cancer: lost in transition?[J]. Nat Rev Urol, 2022, 19(2): 101-115. doi: 10.1038/s41585-021-00524-7
[28] Sood A, Jeong W, Palma-Zamora I, et al. Description of surgical technique and oncologic and functional outcomes of the precision prostatectomy procedure(IDEAL stage 1-2b study)[J]. Eur Urol, 2022, 81(4): 396-406. doi: 10.1016/j.eururo.2021.10.017
[29] Kaouk JH, Ferguson EL, Beksac AT, et al. Single-port robotic transvesical partial prostatectomy for localized prostate cancer: initial series and description of technique[J]. Eur Urol, 2022, 82(5): 551-558. doi: 10.1016/j.eururo.2022.07.017
[30] Klotz L, Pavlovich CP, Chin J, et al. Magnetic resonance imaging-guided transurethral ultrasound ablation of prostate cancer[J]. J Urol, 2021, 205(3): 769-779.
-
计量
- 文章访问数: 1421
- PDF下载数: 1246
- 施引文献: 0