siRNA沉默肾癌细胞EGFR基因对放疗敏感性影响的研究

褚晗, 于德新, 张志强, 等. siRNA沉默肾癌细胞EGFR基因对放疗敏感性影响的研究[J]. 临床泌尿外科杂志, 2013, 28(4): 246-250.
引用本文: 褚晗, 于德新, 张志强, 等. siRNA沉默肾癌细胞EGFR基因对放疗敏感性影响的研究[J]. 临床泌尿外科杂志, 2013, 28(4): 246-250.
CHU Han, YU Dexin, ZHANG Zhiqiang, et al. The effects of EGFR gene RNAi on the radiosensitivity of renal cell carcinoma[J]. J Clin Urol, 2013, 28(4): 246-250.
Citation: CHU Han, YU Dexin, ZHANG Zhiqiang, et al. The effects of EGFR gene RNAi on the radiosensitivity of renal cell carcinoma[J]. J Clin Urol, 2013, 28(4): 246-250.

siRNA沉默肾癌细胞EGFR基因对放疗敏感性影响的研究

  • 基金项目:

    安徽省高校省级自然科学研究项目(编号ZD200907)

详细信息
    通讯作者: 于德新,E-mail:yudx_urology@yahoo.com
  • 中图分类号: R737.11

The effects of EGFR gene RNAi on the radiosensitivity of renal cell carcinoma

More Information
  • 目的:探讨siRNA沉默ACHN肾癌细胞的表皮生长因子受体(epidermal growth factor receptor, EGFR)对放疗敏感性的影响。方法:免疫组化及细胞免疫荧光技术证明组织水平及细胞水平EGFR的表达,化学合成针对EGFR的小干扰RNA,通过脂质体转染法转染进ACHN肾癌细胞中,利用Western blot技术检测细胞中EGFR蛋白的表达,然后分别用0、2、4、6、8Gy剂量的X线对5组肾癌细胞(每组包含空白对照组、非异性RNA干扰组、特异性RNA干扰组)进行照射,光学显微镜下观察细胞凋亡情况,采用台盼蓝据染法检测细胞凋亡率。结果:靶向EGFR序列的特异性干扰RNA可明显抑制EGFR蛋白的表达,光学显微镜下观察到RNAi联合放疗组细胞死亡情况明显,台盼蓝拒染法检测特异性干扰EGFR基因组可显著提高ACHN肾癌细胞对放疗的敏感性(P<0.05)。结论:体外研究表明,siRNA沉默ACHN肾癌细胞的EGFR可明显提高肾癌细胞对放疗的敏感性,为肾癌放射治疗提供了新思路。
  • 加载中
  • [1]

    Mattii L, Bianchi F, Da Prato I, et al. Renal cell cultures for the study of growth factor interactions underlying kidney organogenesis[J]. In Vitro Cell Dev Biol Anim, 2001, 37:251-258.

    [2]

    Pickhard A C, Margraf J, Knopf A, et al. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways[J]. BMC Cancer, 2011, 11:388.

    [3]

    Cao C, Lu S, Sowa A, et al. Priming with EGFR tyrosine kinase inhibitor and EGF sensitizes ovarian cancer cells to respond to chemotherapeutical drugs[J]. Cancer Lett, 2008, 266:249-262.

    [4]

    Pu Y S, Huang C Y, Kuo Y Z, et al. Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma[J]. J Biomed Sci, 2009, 16:82.

    [5]

    Katz D, Ito E, Liu F F. On the path to seeking novel radiosensitizers[J]. Int J Radiat Oncol Biol Phys, 2009, 73:988-996.

    [6]

    Normanno N, Maiello M R, De Luca A. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs):simple drugs with a complex mechanism of action[J]? J Cell Physiol, 2003, 194:13-19.

    [7]

    Shin H K, Kim M S, Lee J K, et al. Combination effect of cetuximab with radiation in colorectal cancer cells[J]. Tumori, 2010, 96:713-720.

    [8]

    Akimoto T, Hunter N R, Buchmiller L, et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas[J]. Clin Cancer Res, 1999, 5:2884-2890.

    [9]

    Gorski D H, Beckett M A, Jaskowiak N T, et al. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation[J]. Cancer Res, 1999, 59:3374-3378.

    [10]

    Zhang Y, Wang J, Liu F, et al. EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells[J]. Cancer Cell Int, 2010, 10:39.

    [11]

    Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase[J]. J Biol Chem, 2005, 280:31182-31189.

    [12]

    Joensuu G, Joensuu T, Nokisalmi P, et al. A phase I/II trial of gefitinib given concurrently with radiotherapy in patients with nonmetastatic prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2010, 78:42-49.

    [13]

    Siddiqui A D, Piperdi B. KRAS mutation in colon cancer:a marker of resistance to EGFR-I therapy[J]. Ann Surg Oncol, 2010, 17:1168-1176.

    [14]

    Gazdar A F. Epidermal growth factor receptor inhibition in lung cancer:the evolving role of individualized therapy[J]. Cancer Metastasis Rev, 2010, 29:37-48.

    [15]

    O'Grady M, Raha D, Hanson B J, et al. Combining RNA interference and kinase inhibitors against cell signalling components involved in cancer[J]. BMC Cancer, 2005, 5:125.

    [16]

    Zhuang W, Li B, Long L, et al. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy[J]. Brain Res, 2011, 1371:7-15.

    [17]

    Collis S J, Schwaninger J M, Ntambi A J, et al. Evasion of early cellular response mechanisms following low level radiation-induced DNA damage[J]. J Biol Chem, 2004, 279:49624-49632.

  • 加载中
计量
  • 文章访问数:  99
  • PDF下载数:  122
  • 施引文献:  0
出版历程
收稿日期:  2012-08-14

目录