前列腺癌人工神经网络诊断模型的应用研究

邱志磊, 徐立柱, 贾魁, 等. 前列腺癌人工神经网络诊断模型的应用研究[J]. 临床泌尿外科杂志, 2015, 30(10): 906-909. doi: 10.13201/j.issn.1001-1420.2015.10.011
引用本文: 邱志磊, 徐立柱, 贾魁, 等. 前列腺癌人工神经网络诊断模型的应用研究[J]. 临床泌尿外科杂志, 2015, 30(10): 906-909. doi: 10.13201/j.issn.1001-1420.2015.10.011
QIU Zhilei, XU Lizhu, JIA Kui, et al. Study on application of artificial neural network in the diagnosis model of prostate cancer[J]. J Clin Urol, 2015, 30(10): 906-909. doi: 10.13201/j.issn.1001-1420.2015.10.011
Citation: QIU Zhilei, XU Lizhu, JIA Kui, et al. Study on application of artificial neural network in the diagnosis model of prostate cancer[J]. J Clin Urol, 2015, 30(10): 906-909. doi: 10.13201/j.issn.1001-1420.2015.10.011

前列腺癌人工神经网络诊断模型的应用研究

详细信息
    通讯作者: 徐立柱,E-mail:qiuzhilei2006@163.com
  • 中图分类号: R737.25

Study on application of artificial neural network in the diagnosis model of prostate cancer

More Information
  • 目的:结合患者临床信息和前列腺肿瘤标记物进行数据挖掘,建立基于人工神经网络的前列腺癌诊断模型,评估其准确性,并为前列腺癌的临床诊断提供客观的参考信息。方法:回顾分析2010年1月~2014年6月在我院就诊的前列腺病患310例,其中前列腺癌组100例,非前列腺癌组210例。患者均接受经直肠前列腺穿刺活检。用210例样本(前列腺癌组70例,非前列腺癌组140例)建立人工神经网络(ANN)模型,并用100例样本(前列腺癌组30例,非前列腺癌组70例)盲法测试和评估此模型。结果:纳入分析的指标有年龄、前列腺特异性抗原(TPSA、FPSA/TPSA、PSAD)、直肠指检、前列腺体积、经直肠超声和前列腺核磁共振结果等,经过反复训练建立的ANN模型对测试样本预测的特异度为80.0%,灵敏度为93.3%。结论:ANN在计算机辅助前列腺癌的诊断,评估患者患有前列腺癌的风险,以及对穿刺检测的指导等方面具有广阔的应用前景。
  • 加载中
  • [1]

    Center M M, Jemal A, Lortet-Tieulent J,et al. International variation in prostate cancer incidence and mortality rates[J]. Eur Urol, 2012, 61(6):1079-1092.

    [2]

    孙颖浩. 我国前列腺癌的研究现状[J].中华泌尿外科杂志, 2004, 25(2):77-80.

    [3]

    Manjunath G, Jaeger H. Echo state property linked to an input:exploring a fundamental characteristic of recurrent neural networks[J]. Neural Comput,2013, 25(3):671-696.

    [4]

    Lawrentschuk N, Lockwood G, Davies P, et al. Predicting prostate biopsy outcome:artificial neural networks and polychotomous regression are equivalent models[J]. Int Urol Nephrol,2011,43(1):23-30.

    [5]

    Krogh A. What are artificial neural networks[J]? Nat Biotechnol, 2008, 26(2):195-197.

    [6]

    Cammann H, Jung K, Meyer H A, et al. Avoiding pit- falls in applying prediction models, as illustrated by the example of prostate cancer diagnosis[J]. Clin Chem, 2011, 57(11):1490-1498.

    [7]

    Patten S B. Problems encountered with the use of simulation in an attempt to enhance interpretation of a secondary data source in epidemiologic mental health research[J]. BMC Res Notes, 2010, 3:231.

    [8]

    Panebianco V, Sciarra A, Marcantonio A, et al. Conventional imaging and multiparametric magnetic resonance (MRI, MRS, DWI, MRP) in the diagnosis of prostate cancer[J]. Q J Nucl Med Mol Imaging, 2012, 56(4):331-342.

    [9]

    Regnier-Coudert O, McCall J, Lothian R, et al. Machine learning for improved pathological staging of prostate cancer:a performance comparison on a range of classifiers[J]. Artif Intell Med, 2012, 55(1):25-35.

    [10]

    Stephan C, Vincendeau S, Houlgatte A, et al. Multicenter evaluation of[-2] proprostate-specific antigen and the prostate health index for detecting prostate cancer[J]. Clin Chem, 2013, 59(1):306-314.

    [11]

    Stephan C, Cammann H, Deger S, et al. Benign prostatic hyperplasia-associated free prostate-specific antigen improves detection of prostate cancer in an artificial neural network[J].Urology, 2009, 74(4):873-877.

    [12]

    Porter C R, Crawford E D. Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer[J]. Oncology (Williston Park), 2003, 17(10):1395-1399; discussion 1399, 1403-1406. Review.

    [13]

    Matsui Y, Utsunomiya N, Ichioka K, et al. The use of artificial neural network analysis to improve the predictive accuracy of pros- tate biopsy in the Japanese population[J]. Jpn J Clin Oncol, 2004, 34(10):602-607.

    [14]

    Remzi M, Anagnostou T, Ravery V, et al. An artificial neural network to predict the outcome of repeat prostate biopsies[J]. Urology, 2003, 62(3):456-460.

    [15]

    Meijer R P, Gemen E F, van Onna I E, et al. The value of an artificial neural network in the decision making for prostate biopsies[J]. World J Urol, 2009, 27(5):593-598.

  • 加载中
计量
  • 文章访问数:  204
  • PDF下载数:  168
  • 施引文献:  0
出版历程
收稿日期:  2015-02-27

目录