纳米靶向载药系统在前列腺癌治疗领域中的研究进展

张轩志, 万方宁, 戴波. 纳米靶向载药系统在前列腺癌治疗领域中的研究进展[J]. 临床泌尿外科杂志, 2022, 37(12): 920-924. doi: 10.13201/j.issn.1001-1420.2022.12.007
引用本文: 张轩志, 万方宁, 戴波. 纳米靶向载药系统在前列腺癌治疗领域中的研究进展[J]. 临床泌尿外科杂志, 2022, 37(12): 920-924. doi: 10.13201/j.issn.1001-1420.2022.12.007
ZHANG Xuanzhi, WAN Fangning, DAI Bo. Nanocarriers-mediated drug delivery systems for prostate cancer treatment: an overview and perspectives[J]. J Clin Urol, 2022, 37(12): 920-924. doi: 10.13201/j.issn.1001-1420.2022.12.007
Citation: ZHANG Xuanzhi, WAN Fangning, DAI Bo. Nanocarriers-mediated drug delivery systems for prostate cancer treatment: an overview and perspectives[J]. J Clin Urol, 2022, 37(12): 920-924. doi: 10.13201/j.issn.1001-1420.2022.12.007

纳米靶向载药系统在前列腺癌治疗领域中的研究进展

  • 基金项目:
    上海市科委科技创新行动计划医学创新研究专项基金(No:20Y11905000);上海市抗癌协会“翱翔”计划(No:SACA-AX202005)
详细信息

Nanocarriers-mediated drug delivery systems for prostate cancer treatment: an overview and perspectives

More Information
  • 我国前列腺癌发病率逐年升高,严重威胁男性生命健康。手术治疗、放疗、内分泌治疗与化疗是针对前列腺癌常见治疗手段,这些治疗手段有效改善了前列腺癌患者整体预后情况,但是仍然存在肿瘤复发、肿瘤耐药、严重并发症等诸多问题。随着纳米技术的发展,纳米靶向载药系统的应用有望提升前列腺癌治疗效果并减轻治疗不良反应,本文概述了纳米靶向载药系统在前列腺癌治疗领域中的最新研究进展,并展望未来研究方向。
  • 加载中
  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    Edis Z, Wang J, Waqas MK, et al. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives[J]. Int J Nanomedicine, 2021, 16: 1313-1330. doi: 10.2147/IJN.S289443

    [3]

    Björnmalm M, Thurecht KJ, Michael M, et al. Bridging bio-nano science and cancer nanomedicine[J]. ACS Nano, 2017, 11(10): 9594-9613. doi: 10.1021/acsnano.7b04855

    [4]

    Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery[J]. Adv Colloid Interface Sci, 2021, 296: 102509. doi: 10.1016/j.cis.2021.102509

    [5]

    Cohen L, Livney YD, Assaraf YG. Targeted nanomedicine modalities for prostate cancer treatment[J]. Drug Resist Updat, 2021, 56: 100762. doi: 10.1016/j.drup.2021.100762

    [6]

    Wang Q, Zhang X, Sun Y, et al. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer[J]. Biomaterials, 2019, 212: 73-86. doi: 10.1016/j.biomaterials.2019.05.009

    [7]

    Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems[J]. Pharmaceutics, 2018, 10(2): 111.

    [8]

    Wang-Gillam A, Li CP, Bodoky G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy(NAPOLI-1): a global, randomised, open-label, phase 3 trial[J]. Lancet, 2016, 387(10018): 545-557. doi: 10.1016/S0140-6736(15)00986-1

    [9]

    Qin X, Li Y. Strategies to design and synthesize polymer-based stimuli-responsive drug-delivery nanosystems[J]. Chem Bio Chem, 2020, 21(9): 1236-1253. doi: 10.1002/cbic.201900550

    [10]

    Autio KA, Dreicer R, Anderson J, et al. Safety and Efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial[J]. JAMA Oncol, 2018, 4(10): 1344-1351. doi: 10.1001/jamaoncol.2018.2168

    [11]

    Sajjadi M, Nasrollahzadeh M, Jaleh B, et al. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects[J]. J Drug Target, 2021, 29(7): 716-741. doi: 10.1080/1061186X.2021.1886301

    [12]

    Comparetti EJ, Romagnoli GG, Gorgulho CM, et al. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes[J]. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111254. doi: 10.1016/j.msec.2020.111254

    [13]

    Vallet-Regí M. Nanostructured mesoporous silica matrices in nanomedicine[J]. J Intern Med, 2010, 267(1): 22-43. doi: 10.1111/j.1365-2796.2009.02190.x

    [14]

    Wu D, Zhu ZQ, Tang HX, et al. Efficacy-shaping nanomedicine by loading Calcium Peroxide into Tumor Microenvironment-responsive Nanoparticles for the Antitumor Therapy of Prostate Cancer[J]. Theranostics, 2020, 10(21): 9808-9829. doi: 10.7150/thno.43631

    [15]

    Chen J, Yang Y, Xu D, et al. Mesoporous silica nanoparticles combined with AKR1C3 siRNA inhibited the growth of castration-resistant prostate cancer by suppressing androgen synthesis in vitro and in vivo[J]. Biochem Biophys Res Commun, 2021, 540: 83-89. doi: 10.1016/j.bbrc.2020.11.074

    [16]

    Quick J, Santos ND, Cheng M, et al. Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy[J]. J Control Release, 2022, 349: 174-183. doi: 10.1016/j.jconrel.2022.06.051

    [17]

    Chen Y, Xu Z, Lu T, et al. Prostate-specific membrane antigen targeted, glutathione-sensitive nanoparticles loaded with docetaxel and enzalutamide for the delivery to prostate cancer[J]. Drug Deliv, 2022, 29(1): 2705-2712. doi: 10.1080/10717544.2022.2110998

    [18]

    Nagesh P, Johnson NR, Boya V, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer[J]. Colloids Surf B Biointerfaces, 2016, 144: 8-20. doi: 10.1016/j.colsurfb.2016.03.071

    [19]

    Bennie LA, Feng J, Emmerson C, et al. Formulating RALA/Au nanocomplexes to enhance nanoparticle internalisation efficiency, sensitising prostate tumour models to radiation treatment[J]. J Nano Bio Technology, 2021, 19(1): 279.

    [20]

    Zhang X, Liu N, Shao Z, et al. Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy[J]. Nano Medicine, 2017, 13(4): 1309-1321.

    [21]

    Wang L, Pei J, Cong Z, et al. Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice[J]. Int J Nanomedicine, 2019, 14: 1817-1833. doi: 10.2147/IJN.S192520

    [22]

    Liu Y, Shang W, Liu H, et al. Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer[J]. J Nano Bio Technology, 2022, 20(1): 48.

    [23]

    Wang Y, Lan M, Shen D, et al. Targeted nanobubbles carrying indocyanine green for ultrasound, photoacoustic and fluorescence imaging of prostate cancer[J]. Int J Nanomedicine, 2020, 15: 4289-4309. doi: 10.2147/IJN.S243548

  • 加载中
计量
  • 文章访问数:  1038
  • PDF下载数:  739
  • 施引文献:  0
出版历程
收稿日期:  2022-10-11
刊出日期:  2022-12-06

目录