肾透明细胞癌微环境中关键基因鉴定及预后列线图模型建立

周玉贺, 张龙, 黄珍林, 等. 肾透明细胞癌微环境中关键基因鉴定及预后列线图模型建立[J]. 临床泌尿外科杂志, 2023, 38(8): 569-575. doi: 10.13201/j.issn.1001-1420.2023.08.002
引用本文: 周玉贺, 张龙, 黄珍林, 等. 肾透明细胞癌微环境中关键基因鉴定及预后列线图模型建立[J]. 临床泌尿外科杂志, 2023, 38(8): 569-575. doi: 10.13201/j.issn.1001-1420.2023.08.002
ZHOU Yuhe, ZHANG Long, HUANG Zhenlin, et al. Identification of key genes in the tumor microenvironment of renal clear cell carcinoma and establishment of a nomogram[J]. J Clin Urol, 2023, 38(8): 569-575. doi: 10.13201/j.issn.1001-1420.2023.08.002
Citation: ZHOU Yuhe, ZHANG Long, HUANG Zhenlin, et al. Identification of key genes in the tumor microenvironment of renal clear cell carcinoma and establishment of a nomogram[J]. J Clin Urol, 2023, 38(8): 569-575. doi: 10.13201/j.issn.1001-1420.2023.08.002

肾透明细胞癌微环境中关键基因鉴定及预后列线图模型建立

  • 基金项目:
    河南省科技攻关项目(No:212102310116)
详细信息

Identification of key genes in the tumor microenvironment of renal clear cell carcinoma and establishment of a nomogram

More Information
  • 目的 筛选肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)微环境中的关键基因,并建立预后预测模型。方法 从TCGA数据库中下载ccRCC RNA-seq FPKM数据及临床数据。基于ESTIMATE算法对肿瘤微环境中免疫细胞、基质细胞进行评分,以免疫细胞,基质细胞评分中位值为界把样品各自分组,组间进行差异表达基因(DEGs)分析,并用wilcoxon检验进行验证,对得到的DEGs取交集获得肿瘤微环境中的关键基因。对获得的关键基因进行功能富集。把样品按照1:1的比例分为训练组和验证组。利用Cox-LASSO法从训练组中的关键基因中筛选出建模基因。多因素Cox回归建立风险评估模型,将风险评估模型与临床指标进行单因素和多因素Cox回归筛选患者预后的独立影响因素。联合各项患者预后独立相关的因素绘制列线图。结果 免疫细胞评分组共获得DEGs 658个,而利用基质细胞评分共获得DEGs 411个,取交集后共得到95个关键基因。随机分组后,训练组与验证组性别、年龄、肿瘤分期及分级的构成比较均差异无统计学意义。训练组中34个基因与患者预后相关,进而通过LASSO回归获得15个特征基因。经多因素Cox分析得到由9个基因(HMGCS2FREM1CASP5SLNSPICSPIBRORBCPN1F7)构成的最优模型。生存分析表明训练组与验证组高低风险组间生存率的差异有统计学意义(P < 0.001),且各组对于1、3、5年生存率的评估有着较高的灵敏度与特异度。经单因素和多因素Cox回归分析发现患者年龄、肿瘤分期、分级、风险评分为患者预后的独立影响因素(均P < 0.001)。联合患者临床因素如年龄、肿瘤分级和肿瘤分期及风险评分构建了预后评估的列线图模型。结论 由9个基因构成的风险评分模型可对ccRCC风险做出准确判断;风险评分、年龄、肿瘤分期、肿瘤分级为ccRCC独立预后影响因素,由其构成的列线图模型可精准预测患者生存率。
  • 加载中
  • 图 1  关键基因的富集分析

    图 2  建模基因的筛选

    图 3  模型预测效能验证

    图 4  列线图模型建立

    表 1  训练组及验证组数据分布 例(%)

    变量 总计(526例) 训练组(263例) 验证组(263例) P
    年龄/岁 0.462
      ≤65 347(65.97) 178(67.68) 169(64.26)
       > 65 179(34.03) 85(32.32) 94(35.74)
    性别 1.000
      女 183(34.79) 92(34.98) 91(34.60)
      男 343(65.21) 171(65.02) 172(65.40)
    肿瘤分级 0.476
      G1 13(2.47) 7(2.66) 6(2.28)
      G2 226(42.97) 113(42.97) 113(42.97)
      G3 205(38.97) 95(36.12) 110(41.83)
      G4 74(14.07) 42(15.97) 32(12.17)
      未知 8(1.52) 6(2.28) 2(0.76)
    肿瘤分期 0.336
      Ⅰ 261(49.62) 141(53.61) 120(45.63)
      Ⅱ 57(10.84) 25(9.51) 32(12.17)
      Ⅲ 123(23.38) 58(22.05) 65(24.71)
      Ⅳ 82(15.59) 38(14.45) 44(16.73)
      未知 3(0.57) 1(0.38) 2(0.76)
    下载: 导出CSV
  • [1]

    Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma[J]. Nat Rev Dis Primers, 2017, 3: 17009. doi: 10.1038/nrdp.2017.9

    [2]

    Liu D, Shu GF, Jin FY, et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule[J]. Sci Adv, 2020, 6(41): eabb7422. doi: 10.1126/sciadv.abb7422

    [3]

    Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality[J]. Nat Rev Nephrol, 2021, 17(4): 245-261. doi: 10.1038/s41581-020-00359-2

    [4]

    Bussard KM, Mutkus L, Stumpf K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment[J]. Breast Cancer Res, 2016, 18(1): 84. doi: 10.1186/s13058-016-0740-2

    [5]

    Tian CX, Huang Y, Clauser KR, et al. Suppression of pancreatic ductal adenocarcinoma growth and metastasis by fibrillar collagens produced selectively by tumor cells[J]. Nat Commun, 2021, 12(1): 2328. doi: 10.1038/s41467-021-22490-9

    [6]

    Li XY, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy[J]. Nat Rev Clin Oncol, 2019, 16(7): 425-441. doi: 10.1038/s41571-019-0203-7

    [7]

    Turajlic S, Swanton C, Boshoff C. Kidney cancer: the next decade[J]. J Exp Med, 2018, 215(10): 2477-2479. doi: 10.1084/jem.20181617

    [8]

    Arjumand W, Sultana S. Role of VHL gene mutation in human renal cell carcinoma[J]. Tumour Biol, 2012, 33(1): 9-16. doi: 10.1007/s13277-011-0257-3

    [9]

    Chen FJ, Zhang YQ, Şenbabaoǧlu Y, et al. Multilevel genomics-based taxonomy of renal cell carcinoma[J]. Cell Rep, 2016, 14(10): 2476-2489. doi: 10.1016/j.celrep.2016.02.024

    [10]

    Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340. doi: 10.1038/nrclinonc.2018.29

    [11]

    Massari F, Rizzo A, Mollica V, et al. Immune-based combinations for the treatment of metastatic renal cell carcinoma: a meta-analysis of randomised clinical trials[J]. Eur J Cancer, 2021, 154: 120-127. doi: 10.1016/j.ejca.2021.06.015

    [12]

    Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy[J]. Cell, 2017, 168(4): 707-723. doi: 10.1016/j.cell.2017.01.017

    [13]

    Carlsson R, Persson C, Leanderson T. SPI-C, a PU-box binding ETS protein expressed temporarily during B-cell development and in macrophages, contains an acidic transactivation domain located to the N-terminus[J]. Mol Immunol, 2003, 39(16): 1035-1043. doi: 10.1016/S0161-5890(03)00032-4

    [14]

    Alam Z, Devalaraja S, Li MH, et al. Counter regulation of spic by NF-κB and STAT signaling controls inflammation and iron metabolism in macrophages[J]. Cell Rep, 2020, 31(13): 107825. doi: 10.1016/j.celrep.2020.107825

    [15]

    Du W, Xu X, Niu Q, et al. Spi-B-mediated silencing of claudin-2 promotes early dissemination of lung cancer cells from primary tumors[J]. Cancer Res, 2017, 77(18): 4809-4822. doi: 10.1158/0008-5472.CAN-17-0020

    [16]

    Martinon F, Tschopp J. [J]. Cell Death Differ, 2007, 14(1): 10-22.

    [17]

    Soung YH, Jeong EG, Ahn CH, et al. Mutational analysis of caspase 1, 4, and 5 genes in common human cancers[J]. Hum Pathol, 2008, 39(6): 895-900. doi: 10.1016/j.humpath.2007.10.015

    [18]

    Zhang Y, Chen XW, Fu QH, et al. Comprehensive analysis of pyroptosis regulators and tumor immune microenvironment in clear cell renal cell carcinoma[J]. Cancer Cell Int, 2021, 21(1): 667. doi: 10.1186/s12935-021-02384-y

    [19]

    Han PP, Wang YF, Luo WQ, et al. Epigenetic inactivation of hydroxymethylglutaryl CoA synthase reduces ketogenesis and facilitates tumor cell motility in clear cell renal carcinoma[J]. Pathol Res Pract, 2021, 227: 153622. doi: 10.1016/j.prp.2021.153622

    [20]

    Kashem MA, Li HZ, Liu LR, et al. The potential role of FREM1 and its isoform TILRR in HIV-1 acquisition through mediating inflammation[J]. Int J Mol Sci, 2021, 22(15): 7825. doi: 10.3390/ijms22157825

    [21]

    Wang GG, Wang Z, Lu HQ, et al. Comprehensive analysis of FRAS1/FREM family as potential biomarkers and therapeutic targets in renal clear cell carcinoma[J]. Front Pharmacol, 2022, 13: 972934. doi: 10.3389/fphar.2022.972934

  • 加载中

(4)

(1)

计量
  • 文章访问数:  953
  • PDF下载数:  247
  • 施引文献:  0
出版历程
收稿日期:  2022-10-07
刊出日期:  2023-08-06

目录