PSA波动患者前列腺穿刺阳性风险列线图预测模型的构建与验证

吴尚, 丁雪飞, 栾阳, 等. PSA波动患者前列腺穿刺阳性风险列线图预测模型的构建与验证[J]. 临床泌尿外科杂志, 2024, 39(2): 120-124. doi: 10.13201/j.issn.1001-1420.2024.02.008
引用本文: 吴尚, 丁雪飞, 栾阳, 等. PSA波动患者前列腺穿刺阳性风险列线图预测模型的构建与验证[J]. 临床泌尿外科杂志, 2024, 39(2): 120-124. doi: 10.13201/j.issn.1001-1420.2024.02.008
WU Shang, DING Xuefei, LUAN Yang, et al. Construction and verification of nomogram prediction model for positive risk of prostate biopsy in patients with PSA fluctuation[J]. J Clin Urol, 2024, 39(2): 120-124. doi: 10.13201/j.issn.1001-1420.2024.02.008
Citation: WU Shang, DING Xuefei, LUAN Yang, et al. Construction and verification of nomogram prediction model for positive risk of prostate biopsy in patients with PSA fluctuation[J]. J Clin Urol, 2024, 39(2): 120-124. doi: 10.13201/j.issn.1001-1420.2024.02.008

PSA波动患者前列腺穿刺阳性风险列线图预测模型的构建与验证

  • 基金项目:
    江苏省卫健委科研课题重点项目(No:ZD2022010)
详细信息
    通讯作者: 丁雪飞,E-mail:xuefeid@126.com
  • 中图分类号: R737.25

Construction and verification of nomogram prediction model for positive risk of prostate biopsy in patients with PSA fluctuation

More Information
  • 目的 探讨≥2次行前列腺特异性抗原(prostate specific antigen,PSA)检测且每次PSA检测结果均在4~10 ng/mL的患者行前列腺穿刺活检阳性的危险因素,构建列线图预测模型并进行评估。方法 收集苏北人民医院2019年1月15日—2022年9月26日期间≥2次行PSA检测且每次PSA检测结果均在4~10 ng/mL患者的相关临床资料,穿刺方法均结合运用认知融合靶向+系统穿刺,采用单因素分析和多因素logistic回归分析筛选影响这类患者行前列腺穿刺活检阳性的危险因素,将筛选出的独立危险因素放入列线图构建预测模型,并通过受试者工作特征(receiver operating characteristic,ROC)曲线分析、校准图和决策曲线分析评估列线图模型的区分度与准确度。结果 共纳入480例患者,其中213例(44.37%)前列腺穿刺活检结果为阳性,多因素logistic回归分析显示,年龄、前列腺体积、PSA速度、PSA倍增时间、PSA波动率是该类患者行前列腺穿刺活检阳性的危险因素(P < 0.05);基于多因素logistic回归分析构建列线图预测模型,ROC曲线下面积为0.859,内部验证校准良好,列线图校准曲线斜率接近1,Hosmer-Lemeshow拟合优度检验为20.869,P=0.171。结论 基于本次研究构建的列线图模型,具有良好的区分度与一致性,可以为≥2次行PSA检测且每次PSA检测结果均在4~10 ng/mL的患者了解患病风险及泌尿科医生做出临床决策提供有效帮助。
  • 加载中
  • 图 1  前列腺横纵剖面分区示意图

    图 2  预测PSA波动患者穿刺阳性列线图模型及其应用

    图 3  列线图模型的校准曲线

    图 4  列线图模型及各临床指标预测PSA波动患者前列腺穿刺阳性的ROC曲线

    图 5  列线图模型的决策曲线

    表 1  480例患者临床指标的单因素分析 X±S

    临床指标 穿刺结果阳性(213例) 穿刺结果阴性(267例) t P
    年龄/岁 72.53±7.67 66.95±8.41 7.584 < 0.001
    BMI/(kg/m2) 23.36±3.21 23.62±3.40 -0.870 0.385
    前列腺体积/mL 27.88±16.08 41.29±22.33 -7.375 < 0.001
    PSA速度/(ng/mL/年) 2.57±4.22 0.75±0.41 6.980 < 0.001
    PSA倍增时间/月 12.68±19.63 32.99±31.01 -8.320 < 0.001
    PSA波动率/(%/月) 22.93±12.40 35.27±14.13 -10.033 < 0.001
    下载: 导出CSV

    表 2  各临床指标的多因素logistic结果

    因素 β OR 95%CI P
    年龄 -0.104 0.901 0.873~0.928 < 0.001
    前列腺体积 0.053 0.949 0.916~0.980 0.002
    PSA速度 -0.478 0.620 0.426~0.914 0.016
    PSA倍增时间 0.026 1.026 1.012~1.041 < 0.001
    PSA波动率 0.123 1.131 1.078~1.195 < 0.001
    下载: 导出CSV

    表 3  列线图模型及各临床指标对PSA波动患者前列腺穿刺阳性的预测效果

    临床指标 灵敏度 特异度 约登指数 AUC Z P
    年龄 0.831 0.431 0.262 0.681 -6.806 < 0.001
    前列腺体积 0.812 0.554 0.367 0.711 -7.954 < 0.001
    PSA速度 0.657 0.723 0.380 0.732 -8.723 < 0.001
    PSA倍增时间 0.690 0.783 0.473 0.789 -10.892 < 0.001
    PSA波动率 0.770 0.655 0.425 0.745 -9.215 < 0.001
    列线图模型 0.803 0.801 0.604 0.859
    下载: 导出CSV
  • [1]

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. doi: 10.3322/caac.21332

    [2]

    Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. doi: 10.1097/CM9.0000000000002108

    [3]

    Tzeng M, Basourakos SP, Patel HD, et al. Pooled outcomes of performing freehand transperineal prostate biopsy with the PrecisionPoint Transperineal Access System[J]. BJUI Compass, 2022, 3(6): 434-442. doi: 10.1002/bco2.178

    [4]

    冯天瑞, 严维刚. 经会阴前列腺穿刺活检研究进展[J]. 临床泌尿外科杂志, 2021, 36(6): 485-491. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2021.06.013

    [5]

    杭天昆, 李通义, 石明凯, 等. 建立针对PSA灰区前列腺癌的临床预测模型: 一项针对SEER数据库的研究[J]. 临床泌尿外科杂志, 2022, 37(8): 606-614. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2022.08.008

    [6]

    Jiang SQ, Huang ZC, Liu BQ, et al. MRI-based nomogram of prostate maximum sectional area and its zone area for prediction of prostate cancer[J]. Front Oncol, 2021, 11: 708730. doi: 10.3389/fonc.2021.708730

    [7]

    Feng F, Zhong YX, Chen Y, et al. Establishment and validation of serum lipid-based nomogram for predicting the risk of prostate cancer[J]. BMC Urol, 2023, 23(1): 120. doi: 10.1186/s12894-023-01291-w

    [8]

    施云峰, 曹锴, 刘晓武, 等. 认知融合MRI和超声引导靶向穿刺在前列腺前部肿瘤诊断中的临床应用[J]. 临床泌尿外科杂志, 2023, 38(4): 251-254. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2023.04.003

    [9]

    付振宇, 孙利国, 张鸽, 等. MRI/TRUS认知融合联合12针系统经会阴前列腺穿刺活检的临床研究[J]. 中华男科学杂志, 2021, 27(5): 421-425.

    [10]

    Park YH, Lee JK, Jung JW, et al. Prostate cancer detection rate in patients with fluctuating prostate-specific antigen levels on the repeat prostate biopsy[J]. Prostate Int, 2014, 2(1): 26-30. doi: 10.12954/PI.13037

    [11]

    Celhay O, de la Taille A, Salomon L, et al. Fluctuating prostate-specific antigen levels in patients with initial negative biopsy: should we be reassured?[J]. BJU Int, 2007, 99(5): 1028-1030. doi: 10.1111/j.1464-410X.2007.06752.x

    [12]

    Cormio L, Cindolo L, Troiano F, et al. Development and internal validation of novel nomograms based on benign prostatic obstruction-related parameters to predict the risk of prostate cancer at first prostate biopsy[J]. Front Oncol, 2018, 8: 438. doi: 10.3389/fonc.2018.00438

    [13]

    Kim JS, Ryu JG, Kim JW, et al. Prostate-Specific Antigen fluctuation: what does it mean in diagnosis of prostate cancer?[J]. Int Braz J Urol, 2015, 41(2): 258-264. doi: 10.1590/S1677-5538.IBJU.2015.02.11

    [14]

    Ramírez ML, Nelson EC, Devere White RW, et al. Current applications for prostate-specific antigen doubling time[J]. Eur Urol, 2008, 54(2): 291-300. doi: 10.1016/j.eururo.2008.04.003

    [15]

    Lee SM, Liyanage SH, Wulaningsih W, et al. Toward an MRI-based nomogram for the prediction of transperineal prostate biopsy outcome: a physician and patient decision tool[J]. Urol Oncol, 2017, 35(11): 664. e11-664. e18. doi: 10.1016/j.urolonc.2017.07.018

    [16]

    Hamidi N, Atmaca AF, Canda AE, et al. Does extent of prostate-specific antigen fluctuation can predict Gleason score upgrading in low-risk prostate cancer patients?[J]. Turk J Urol, 2019, 45(Supp. 1): S42-S48.

    [17]

    Flores-Fraile MC, Padilla-Fernández BY, Valverde-Martínez S, et al. The association between prostate-specific antigen velocity(PSAV), value and acceleration, and of the free PSA/total PSA index or ratio, with prostate conditions[J]. J Clin Med, 2020, 9(11): 3400. doi: 10.3390/jcm9113400

    [18]

    Kobayashi M, Kijima T, Yashi M, et al. Prostate-specific antigen kinetics contributes to decision making for biopsy referral: the predictive implication for PSA retest in patients with elevated PSA levels[J]. Prostate Int, 2023, 11(1): 27-33. doi: 10.1016/j.prnil.2022.08.001

    [19]

    Gallagher KM, Christopher E, Cameron AJ, et al. Four-year outcomes from a multiparametric magnetic resonance imaging(MRI)-based active surveillance programme: PSA dynamics and serial MRI scans allow omission of protocol biopsies[J]. BJU Int, 2019, 123(3): 429-438. doi: 10.1111/bju.14513

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1129
  • PDF下载数:  681
  • 施引文献:  0
出版历程
收稿日期:  2023-07-29
刊出日期:  2024-02-06

目录