TP53突变在前列腺癌发生发展以及治疗与预后评估中作用的研究进展

汪正斌, 温诚浩, 张力. TP53突变在前列腺癌发生发展以及治疗与预后评估中作用的研究进展[J]. 临床泌尿外科杂志, 2024, 39(2): 167-171. doi: 10.13201/j.issn.1001-1420.2024.02.017
引用本文: 汪正斌, 温诚浩, 张力. TP53突变在前列腺癌发生发展以及治疗与预后评估中作用的研究进展[J]. 临床泌尿外科杂志, 2024, 39(2): 167-171. doi: 10.13201/j.issn.1001-1420.2024.02.017
WANG Zhengbin, WEN Chenghao, ZHANG Li. Research progress on the role of TP53 mutation in the occurrence, development, treatment, and prognosis evaluation of prostate cancer[J]. J Clin Urol, 2024, 39(2): 167-171. doi: 10.13201/j.issn.1001-1420.2024.02.017
Citation: WANG Zhengbin, WEN Chenghao, ZHANG Li. Research progress on the role of TP53 mutation in the occurrence, development, treatment, and prognosis evaluation of prostate cancer[J]. J Clin Urol, 2024, 39(2): 167-171. doi: 10.13201/j.issn.1001-1420.2024.02.017

TP53突变在前列腺癌发生发展以及治疗与预后评估中作用的研究进展

  • 基金项目:
    国家自然科学基金(No:82272149)
详细信息

Research progress on the role of TP53 mutation in the occurrence, development, treatment, and prognosis evaluation of prostate cancer

More Information
  • 前列腺癌(prostate cancer,PCa)是男性泌尿生殖系最常见的恶性肿瘤之一,其发病率及死亡率近年来逐渐升高。研究表明肿瘤抑制基因TP53突变在PCa中起着重要作用,TP53突变后形成突变型TP53,其表达产物突变型P53蛋白即失去原有的抑癌作用。因此,探究TP53基因突变在PCa发生与进展等方面中的作用,进而以TP53突变为靶点治疗PCa逐渐成为研究热点,这对于延长PCa患者生存期可能具有重要的临床意义。本文就TP53基因突变在PCa发生发展以及治疗与预后评估中作用的研究进展作一综述。
  • 加载中
  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J(Engl), 2022, 135(5): 584-590.

    [3]

    蔡会龙, 原伟光, 刘思奇, 等. 1990年和2019年中国前列腺癌疾病负担及危险因素研究[J]. 临床泌尿外科杂志, 2022, 37(10): 749-752. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2022.10.005

    [4]

    Marei HE, Althani A, Afifi N, et al. p53 signaling in cancer progression and therapy[J]. Cancer Cell Int, 2021, 21(1): 703. doi: 10.1186/s12935-021-02396-8

    [5]

    Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53[J]. Annu Rev Biochem, 2008, 77: 557-582. doi: 10.1146/annurev.biochem.77.060806.091238

    [6]

    Pavlakis E, Stiewe T. p53's extended reach: the mutant p53 secretome[J]. Biomolecules, 2020, 10(2): 307. doi: 10.3390/biom10020307

    [7]

    Lacroix M, Riscal R, Arena G, et al. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer[J]. Mol Metab, 2020, 33: 2-22. doi: 10.1016/j.molmet.2019.10.002

    [8]

    Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53(R175H)upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells[J]. Cell Death Differ, 2011, 18(2): 271-281. doi: 10.1038/cdd.2010.94

    [9]

    Duffy MJ, Synnott NC, O'Grady S, et al. Targeting p53 for the treatment of cancer[J]. Semin Cancer Biol, 2022, 79: 58-67. doi: 10.1016/j.semcancer.2020.07.005

    [10]

    Bykov VJN, Eriksson SE, Bianchi J, et al. Targeting mutant p53 for efficient cancer therapy[J]. Nat Rev Cancer, 2018, 18(2): 89-102. doi: 10.1038/nrc.2017.109

    [11]

    Chen XH, Zhang TT, Su W, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation[J]. Cell Death Dis, 2022, 13(11): 974. doi: 10.1038/s41419-022-05408-1

    [12]

    Aggarwal M, Saxena R, Asif N, et al. p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition[J]. J Exp Clin Cancer Res, 2019, 38(1): 307. doi: 10.1186/s13046-019-1267-z

    [13]

    Zhang WS, Dong Y, Sartor O, et al. Deciphering the increased prevalence of TP53 mutations in metastatic prostate cancer[J]. Cancer Inform, 2022, 21: 11769351221087046.

    [14]

    Heidenberg HB, Bauer JJ, McLeod DG, et al. The role of the p53 tumor suppressor gene in prostate cancer: a possible biomarker?[J]. Urology, 1996, 48(6): 971-979. doi: 10.1016/S0090-4295(96)00365-2

    [15]

    Chi SG, deVere White RW, Meyers FJ, et al. p53 in prostate cancer: frequent expressed transition mutations[J]. J Natl Cancer Inst, 1994, 86(12): 926-933. doi: 10.1093/jnci/86.12.926

    [16]

    Tamboli P, Amin MB, Xu HJ, et al. Immunohistochemical expression of retinoblastoma and p53 tumor suppressor genes in prostatic intraepithelial neoplasia: comparison with prostatic adenocarcinoma and benign prostate[J]. Mod Pathol, 1998, 11(3): 247-252.

    [17]

    Zheng L, Wang FW, Qian CP, et al. Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines[J]. Hum Mutat, 2006, 27(10): 1062-1063.

    [18]

    Sherr CJ, McCormick F. The RB and p53 pathways in cancer[J]. Cancer Cell, 2002, 2(2): 103-112. doi: 10.1016/S1535-6108(02)00102-2

    [19]

    Maxwell KN, Cheng HH, Powers J, et al. Inherited TP53 variants and risk of prostate cancer[J]. Eur Urol, 2022, 81(3): 243-250. doi: 10.1016/j.eururo.2021.10.036

    [20]

    Ecke TH, Schlechte HH, Schiemenz K, et al. TP53 gene mutations in prostate cancer progression[J]. Anticancer Res, 2010, 30(5): 1579-1586.

    [21]

    Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database[J]. Hum Mutat, 2007, 28(6): 622-629. doi: 10.1002/humu.20495

    [22]

    Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. doi: 10.1210/endrev/bnab002

    [23]

    Maughan BL, Guedes LB, Boucher K, et al. p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer[J]. Prostate Cancer Prostatic Dis, 2018, 21(2): 260-268. doi: 10.1038/s41391-017-0027-4

    [24]

    Nouri M, Massah S, Caradec J, et al. Transient Sox9 expression facilitates resistance to androgen-targeted therapy in prostate cancer[J]. Clin Cancer Res, 2020, 26(7): 1678-1689. doi: 10.1158/1078-0432.CCR-19-0098

    [25]

    Shangguan X, Ma ZH, Yu MH, et al. Squalene epoxidase metabolic dependency is a targetable vulnerability in castration-resistant prostate cancer[J]. Cancer Res, 2022, 82(17): 3032-3044. doi: 10.1158/0008-5472.CAN-21-3822

    [26]

    Lunardi A, Ala U, Epping MT, et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer[J]. Nat Genet, 2013, 45(7): 747-755. doi: 10.1038/ng.2650

    [27]

    Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001

    [28]

    Fan LC, Gong YM, He YM, et al. TRIM59 is suppressed by androgen receptor and acts to promote lineage plasticity and treatment-induced neuroendocrine differentiation in prostate cancer[J]. Oncogene, 2023, 42(8): 559-571. doi: 10.1038/s41388-022-02498-1

    [29]

    Mu P, Zhang ZD, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. doi: 10.1126/science.aah4307

    [30]

    Ku SY, Rosario S, Wang YQ, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. doi: 10.1126/science.aah4199

    [31]

    Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045

    [32]

    Klimovich B, Meyer L, Merle N, et al. Partial p53 reactivation is sufficient to induce cancer regression[J]. J Exp Clin Cancer Res, 2022, 41(1): 80. doi: 10.1186/s13046-022-02269-6

    [33]

    Chen ZL, Chen J, Keshamouni VG, et al. Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro[J]. Biochem Biophys Res Commun, 2017, 489(2): 130-134. doi: 10.1016/j.bbrc.2017.05.111

    [34]

    Yan W, Liu S, Xu E, et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8[J]. Oncogene, 2013, 32(5): 599-609. doi: 10.1038/onc.2012.81

    [35]

    Wang MM, Yang ZY, Song Y, et al. Proteasomal and autophagy-mediated degradation of mutp53 proteins through mitochondria-targeting aggregation-induced-emission materials[J]. Acta Biomater, 2022, 150: 402-412. doi: 10.1016/j.actbio.2022.07.057

    [36]

    Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors[J]. Nat Chem Biol, 2011, 7(5): 285-295. doi: 10.1038/nchembio.546

    [37]

    Kravchenko JE, Ilyinskaya GV, Komarov PG, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway[J]. Proc Natl Acad Sci U S A, 2008, 105(17): 6302-6307. doi: 10.1073/pnas.0802091105

    [38]

    Zhang SL, Zhou LL, Hong B, et al. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53[J]. Cancer Res, 2015, 75(18): 3842-3852. doi: 10.1158/0008-5472.CAN-13-1079

    [39]

    Senatus PB, Li Y, Mandigo C, et al. Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide[J]. Mol Cancer Ther, 2006, 5(1): 20-28. doi: 10.1158/1535-7163.MCT-05-0181

    [40]

    Hamid AA, Gray KP, Shaw G, et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer[J]. Eur Urol, 2019, 76(1): 89-97. doi: 10.1016/j.eururo.2018.11.045

    [41]

    Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4): 444-457. doi: 10.1158/2159-8290.CD-17-0937

    [42]

    Dong BJ, Fan LC, Yang B, et al. Use of circulating tumor DNA for the clinical management of metastatic castration-resistant prostate cancer: a multicenter, real-world study[J]. J Natl Compr Canc Netw, 2021, 19(8): 905-914. doi: 10.6004/jnccn.2020.7663

    [43]

    Huang H, Tang YF, Li P, et al. Significance of TP53 and immune-related genes to prostate cancer[J]. Transl Androl Urol, 2021, 10(4): 1754-1768. doi: 10.21037/tau-21-179

    [44]

    Deek MP, van der Eecken K, Phillips R, et al. The mutational landscape of metastatic castration-sensitive prostate cancer: the spectrum theory revisited[J]. Eur Urol, 2021, 80(5): 632-640. doi: 10.1016/j.eururo.2020.12.040

    [45]

    阎洪涛, 龚百生, 董丹丹, 等. p53和VEGF在前列腺癌组织中的表达及临床意义[J]. 现代泌尿外科杂志, 2007, 12(4): 242-245. doi: 10.3969/j.issn.1009-8291.2007.04.012

    [46]

    祁峰, 李潇, 徐维章, 等. TP53基因突变在前列腺癌患者中的临床特征及预后价值[J]. 临床泌尿外科杂志, 2022, 37(12): 906-910. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2022.12.004

  • 加载中
计量
  • 文章访问数:  1892
  • PDF下载数:  1242
  • 施引文献:  0
出版历程
收稿日期:  2023-05-11
刊出日期:  2024-02-06

目录