Research progress on the role of TP53 mutation in the occurrence, development, treatment, and prognosis evaluation of prostate cancer
-
摘要: 前列腺癌(prostate cancer,PCa)是男性泌尿生殖系最常见的恶性肿瘤之一,其发病率及死亡率近年来逐渐升高。研究表明肿瘤抑制基因TP53突变在PCa中起着重要作用,TP53突变后形成突变型TP53,其表达产物突变型P53蛋白即失去原有的抑癌作用。因此,探究TP53基因突变在PCa发生与进展等方面中的作用,进而以TP53突变为靶点治疗PCa逐渐成为研究热点,这对于延长PCa患者生存期可能具有重要的临床意义。本文就TP53基因突变在PCa发生发展以及治疗与预后评估中作用的研究进展作一综述。Abstract: Prostate cancer is one of the most frequently malignant tumors in male genitourinary system, and its morbidity and mortality have gradually increased in recent years.A large number of studies have shown that the mutation of tumor suppressor gene TP53 plays an important role in PCa.Mutant TP53 is formed after mutation of TP53, and its expression product mutant P53 protein loses its original anti-tumor effect.Therefore, to explore the role of TP53 gene mutation in the occurrence and progression of PCa, and then treat PCa by targeting TP53 mutation has gradually become a research hotspot, which may have important clinical significance for prolonging the survival of PCa patients.This article reviews the research progress on the role of TP53 gene mutation in the occurrence, development, treatment, and prognosis evaluation of PCa.
-
Key words:
- prostate cancer /
- TP53 gene /
- mutation
-
-
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[2] Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J(Engl), 2022, 135(5): 584-590.
[3] 蔡会龙, 原伟光, 刘思奇, 等. 1990年和2019年中国前列腺癌疾病负担及危险因素研究[J]. 临床泌尿外科杂志, 2022, 37(10): 749-752. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2022.10.005
[4] Marei HE, Althani A, Afifi N, et al. p53 signaling in cancer progression and therapy[J]. Cancer Cell Int, 2021, 21(1): 703. doi: 10.1186/s12935-021-02396-8
[5] Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53[J]. Annu Rev Biochem, 2008, 77: 557-582. doi: 10.1146/annurev.biochem.77.060806.091238
[6] Pavlakis E, Stiewe T. p53's extended reach: the mutant p53 secretome[J]. Biomolecules, 2020, 10(2): 307. doi: 10.3390/biom10020307
[7] Lacroix M, Riscal R, Arena G, et al. Metabolic functions of the tumor suppressor p53: implications in normal physiology, metabolic disorders, and cancer[J]. Mol Metab, 2020, 33: 2-22. doi: 10.1016/j.molmet.2019.10.002
[8] Kogan-Sakin I, Tabach Y, Buganim Y, et al. Mutant p53(R175H)upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells[J]. Cell Death Differ, 2011, 18(2): 271-281. doi: 10.1038/cdd.2010.94
[9] Duffy MJ, Synnott NC, O'Grady S, et al. Targeting p53 for the treatment of cancer[J]. Semin Cancer Biol, 2022, 79: 58-67. doi: 10.1016/j.semcancer.2020.07.005
[10] Bykov VJN, Eriksson SE, Bianchi J, et al. Targeting mutant p53 for efficient cancer therapy[J]. Nat Rev Cancer, 2018, 18(2): 89-102. doi: 10.1038/nrc.2017.109
[11] Chen XH, Zhang TT, Su W, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation[J]. Cell Death Dis, 2022, 13(11): 974. doi: 10.1038/s41419-022-05408-1
[12] Aggarwal M, Saxena R, Asif N, et al. p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition[J]. J Exp Clin Cancer Res, 2019, 38(1): 307. doi: 10.1186/s13046-019-1267-z
[13] Zhang WS, Dong Y, Sartor O, et al. Deciphering the increased prevalence of TP53 mutations in metastatic prostate cancer[J]. Cancer Inform, 2022, 21: 11769351221087046.
[14] Heidenberg HB, Bauer JJ, McLeod DG, et al. The role of the p53 tumor suppressor gene in prostate cancer: a possible biomarker?[J]. Urology, 1996, 48(6): 971-979. doi: 10.1016/S0090-4295(96)00365-2
[15] Chi SG, deVere White RW, Meyers FJ, et al. p53 in prostate cancer: frequent expressed transition mutations[J]. J Natl Cancer Inst, 1994, 86(12): 926-933. doi: 10.1093/jnci/86.12.926
[16] Tamboli P, Amin MB, Xu HJ, et al. Immunohistochemical expression of retinoblastoma and p53 tumor suppressor genes in prostatic intraepithelial neoplasia: comparison with prostatic adenocarcinoma and benign prostate[J]. Mod Pathol, 1998, 11(3): 247-252.
[17] Zheng L, Wang FW, Qian CP, et al. Unique substitution of CHEK2 and TP53 mutations implicated in primary prostate tumors and cancer cell lines[J]. Hum Mutat, 2006, 27(10): 1062-1063.
[18] Sherr CJ, McCormick F. The RB and p53 pathways in cancer[J]. Cancer Cell, 2002, 2(2): 103-112. doi: 10.1016/S1535-6108(02)00102-2
[19] Maxwell KN, Cheng HH, Powers J, et al. Inherited TP53 variants and risk of prostate cancer[J]. Eur Urol, 2022, 81(3): 243-250. doi: 10.1016/j.eururo.2021.10.036
[20] Ecke TH, Schlechte HH, Schiemenz K, et al. TP53 gene mutations in prostate cancer progression[J]. Anticancer Res, 2010, 30(5): 1579-1586.
[21] Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database[J]. Hum Mutat, 2007, 28(6): 622-629. doi: 10.1002/humu.20495
[22] Desai K, McManus JM, Sharifi N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. doi: 10.1210/endrev/bnab002
[23] Maughan BL, Guedes LB, Boucher K, et al. p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer[J]. Prostate Cancer Prostatic Dis, 2018, 21(2): 260-268. doi: 10.1038/s41391-017-0027-4
[24] Nouri M, Massah S, Caradec J, et al. Transient Sox9 expression facilitates resistance to androgen-targeted therapy in prostate cancer[J]. Clin Cancer Res, 2020, 26(7): 1678-1689. doi: 10.1158/1078-0432.CCR-19-0098
[25] Shangguan X, Ma ZH, Yu MH, et al. Squalene epoxidase metabolic dependency is a targetable vulnerability in castration-resistant prostate cancer[J]. Cancer Res, 2022, 82(17): 3032-3044. doi: 10.1158/0008-5472.CAN-21-3822
[26] Lunardi A, Ala U, Epping MT, et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer[J]. Nat Genet, 2013, 45(7): 747-755. doi: 10.1038/ng.2650
[27] Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228. doi: 10.1016/j.cell.2015.05.001
[28] Fan LC, Gong YM, He YM, et al. TRIM59 is suppressed by androgen receptor and acts to promote lineage plasticity and treatment-induced neuroendocrine differentiation in prostate cancer[J]. Oncogene, 2023, 42(8): 559-571. doi: 10.1038/s41388-022-02498-1
[29] Mu P, Zhang ZD, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53-and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. doi: 10.1126/science.aah4307
[30] Ku SY, Rosario S, Wang YQ, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83. doi: 10.1126/science.aah4199
[31] Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298-305. doi: 10.1038/nm.4045
[32] Klimovich B, Meyer L, Merle N, et al. Partial p53 reactivation is sufficient to induce cancer regression[J]. J Exp Clin Cancer Res, 2022, 41(1): 80. doi: 10.1186/s13046-022-02269-6
[33] Chen ZL, Chen J, Keshamouni VG, et al. Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro[J]. Biochem Biophys Res Commun, 2017, 489(2): 130-134. doi: 10.1016/j.bbrc.2017.05.111
[34] Yan W, Liu S, Xu E, et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8[J]. Oncogene, 2013, 32(5): 599-609. doi: 10.1038/onc.2012.81
[35] Wang MM, Yang ZY, Song Y, et al. Proteasomal and autophagy-mediated degradation of mutp53 proteins through mitochondria-targeting aggregation-induced-emission materials[J]. Acta Biomater, 2022, 150: 402-412. doi: 10.1016/j.actbio.2022.07.057
[36] Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors[J]. Nat Chem Biol, 2011, 7(5): 285-295. doi: 10.1038/nchembio.546
[37] Kravchenko JE, Ilyinskaya GV, Komarov PG, et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway[J]. Proc Natl Acad Sci U S A, 2008, 105(17): 6302-6307. doi: 10.1073/pnas.0802091105
[38] Zhang SL, Zhou LL, Hong B, et al. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53[J]. Cancer Res, 2015, 75(18): 3842-3852. doi: 10.1158/0008-5472.CAN-13-1079
[39] Senatus PB, Li Y, Mandigo C, et al. Restoration of p53 function for selective Fas-mediated apoptosis in human and rat glioma cells in vitro and in vivo by a p53 COOH-terminal peptide[J]. Mol Cancer Ther, 2006, 5(1): 20-28. doi: 10.1158/1535-7163.MCT-05-0181
[40] Hamid AA, Gray KP, Shaw G, et al. Compound genomic alterations of TP53, PTEN, and RB1 tumor suppressors in localized and metastatic prostate cancer[J]. Eur Urol, 2019, 76(1): 89-97. doi: 10.1016/j.eururo.2018.11.045
[41] Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4): 444-457. doi: 10.1158/2159-8290.CD-17-0937
[42] Dong BJ, Fan LC, Yang B, et al. Use of circulating tumor DNA for the clinical management of metastatic castration-resistant prostate cancer: a multicenter, real-world study[J]. J Natl Compr Canc Netw, 2021, 19(8): 905-914. doi: 10.6004/jnccn.2020.7663
[43] Huang H, Tang YF, Li P, et al. Significance of TP53 and immune-related genes to prostate cancer[J]. Transl Androl Urol, 2021, 10(4): 1754-1768. doi: 10.21037/tau-21-179
[44] Deek MP, van der Eecken K, Phillips R, et al. The mutational landscape of metastatic castration-sensitive prostate cancer: the spectrum theory revisited[J]. Eur Urol, 2021, 80(5): 632-640. doi: 10.1016/j.eururo.2020.12.040
[45] 阎洪涛, 龚百生, 董丹丹, 等. p53和VEGF在前列腺癌组织中的表达及临床意义[J]. 现代泌尿外科杂志, 2007, 12(4): 242-245. doi: 10.3969/j.issn.1009-8291.2007.04.012
[46] 祁峰, 李潇, 徐维章, 等. TP53基因突变在前列腺癌患者中的临床特征及预后价值[J]. 临床泌尿外科杂志, 2022, 37(12): 906-910. https://lcmw.whuhzzs.com/article/doi/10.13201/j.issn.1001-1420.2022.12.004
-
计量
- 文章访问数: 1892
- PDF下载数: 1242
- 施引文献: 0